Baoxin Qian, Yan Zhao, Xinxin Zhang, Chunyan Zhao, Xiaoteng Cui, Fengmei Wang, Xiang Jing, Lin Ge, Zhi Yao, Xingjie Gao, Jie Yang
{"title":"Tudor葡萄球菌核酸酶(Tudor- sn)调节静止的肝星状细胞的激活。","authors":"Baoxin Qian, Yan Zhao, Xinxin Zhang, Chunyan Zhao, Xiaoteng Cui, Fengmei Wang, Xiang Jing, Lin Ge, Zhi Yao, Xingjie Gao, Jie Yang","doi":"10.1111/febs.70073","DOIUrl":null,"url":null,"abstract":"<p><p>Several liver diseases have been associated with the Tudor staphylococcal nuclease (Tudor-SN) protein. Our previous results demonstrated that, in comparison to wild-type (WT) mice, systemic overexpression of Tudor-SN in transgenic (Tg) mice (Tudor-SN-Tg) ameliorates obesity-induced insulin resistance and hepatic steatosis. In this study, we observed an inverse correlation in the expression levels of Tudor-SN and profibrogenic factors, such as alpha-smooth muscle actin (α-SMA) and collagen alpha-1(I) chain (COL1A1), in liver tissue samples between Tudor-SN-Tg and WT mice. The correlation was further validated in hepatic fibrotic tissues from patients with cirrhosis and fibrosis. Utilizing a carbon tetrachloride (CCl<sub>4</sub>)-induced hepatic fibrosis model, we observed that Tudor-SN attenuated hepatic fibrosis in mice. Tudor-SN was abundantly expressed in hepatic stellate cells (HSCs). In the Tudor-SN-Tg group, primary HSCs showed stellate-like morphology as well as reduced in vitro proliferation and chemotactic ability compared to the WT group. Pseudotime series analysis of HSCs further showed the role of Tudor-SN during the dynamic evolution of HSC activation. Reduced Tudor-SN expression facilitated the in vitro activation of LX-2 cells. Furthermore, primary HSC cells from WT and Tudor-SN knockout (KO) mice were isolated for RNA-sequencing analysis. The findings suggested that Tudor-SN may regulate the activation of primary HSCs by influencing lipid metabolism, translation initiation, immune response, and the extracellular matrix. In summary, we identified Tudor-SN as a newly identified regulator involved in the transition of quiescent HSCs to activated states, shedding light on the antifibrotic impact of Tudor-SN expression in the development of hepatic fibrosis.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tudor staphylococcal nuclease (Tudor-SN) regulates activation of quiescent hepatic stellate cells.\",\"authors\":\"Baoxin Qian, Yan Zhao, Xinxin Zhang, Chunyan Zhao, Xiaoteng Cui, Fengmei Wang, Xiang Jing, Lin Ge, Zhi Yao, Xingjie Gao, Jie Yang\",\"doi\":\"10.1111/febs.70073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Several liver diseases have been associated with the Tudor staphylococcal nuclease (Tudor-SN) protein. Our previous results demonstrated that, in comparison to wild-type (WT) mice, systemic overexpression of Tudor-SN in transgenic (Tg) mice (Tudor-SN-Tg) ameliorates obesity-induced insulin resistance and hepatic steatosis. In this study, we observed an inverse correlation in the expression levels of Tudor-SN and profibrogenic factors, such as alpha-smooth muscle actin (α-SMA) and collagen alpha-1(I) chain (COL1A1), in liver tissue samples between Tudor-SN-Tg and WT mice. The correlation was further validated in hepatic fibrotic tissues from patients with cirrhosis and fibrosis. Utilizing a carbon tetrachloride (CCl<sub>4</sub>)-induced hepatic fibrosis model, we observed that Tudor-SN attenuated hepatic fibrosis in mice. Tudor-SN was abundantly expressed in hepatic stellate cells (HSCs). In the Tudor-SN-Tg group, primary HSCs showed stellate-like morphology as well as reduced in vitro proliferation and chemotactic ability compared to the WT group. Pseudotime series analysis of HSCs further showed the role of Tudor-SN during the dynamic evolution of HSC activation. Reduced Tudor-SN expression facilitated the in vitro activation of LX-2 cells. Furthermore, primary HSC cells from WT and Tudor-SN knockout (KO) mice were isolated for RNA-sequencing analysis. The findings suggested that Tudor-SN may regulate the activation of primary HSCs by influencing lipid metabolism, translation initiation, immune response, and the extracellular matrix. In summary, we identified Tudor-SN as a newly identified regulator involved in the transition of quiescent HSCs to activated states, shedding light on the antifibrotic impact of Tudor-SN expression in the development of hepatic fibrosis.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.70073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Several liver diseases have been associated with the Tudor staphylococcal nuclease (Tudor-SN) protein. Our previous results demonstrated that, in comparison to wild-type (WT) mice, systemic overexpression of Tudor-SN in transgenic (Tg) mice (Tudor-SN-Tg) ameliorates obesity-induced insulin resistance and hepatic steatosis. In this study, we observed an inverse correlation in the expression levels of Tudor-SN and profibrogenic factors, such as alpha-smooth muscle actin (α-SMA) and collagen alpha-1(I) chain (COL1A1), in liver tissue samples between Tudor-SN-Tg and WT mice. The correlation was further validated in hepatic fibrotic tissues from patients with cirrhosis and fibrosis. Utilizing a carbon tetrachloride (CCl4)-induced hepatic fibrosis model, we observed that Tudor-SN attenuated hepatic fibrosis in mice. Tudor-SN was abundantly expressed in hepatic stellate cells (HSCs). In the Tudor-SN-Tg group, primary HSCs showed stellate-like morphology as well as reduced in vitro proliferation and chemotactic ability compared to the WT group. Pseudotime series analysis of HSCs further showed the role of Tudor-SN during the dynamic evolution of HSC activation. Reduced Tudor-SN expression facilitated the in vitro activation of LX-2 cells. Furthermore, primary HSC cells from WT and Tudor-SN knockout (KO) mice were isolated for RNA-sequencing analysis. The findings suggested that Tudor-SN may regulate the activation of primary HSCs by influencing lipid metabolism, translation initiation, immune response, and the extracellular matrix. In summary, we identified Tudor-SN as a newly identified regulator involved in the transition of quiescent HSCs to activated states, shedding light on the antifibrotic impact of Tudor-SN expression in the development of hepatic fibrosis.