设计一种优化的防御肽,用于使用计算机方法治疗HIV。

IF 1.5 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Zahra Mosalanejad, Seyed Nooreddin Faraji, Mohammad Reza Rahbar, Ahmad Gholami
{"title":"设计一种优化的防御肽,用于使用计算机方法治疗HIV。","authors":"Zahra Mosalanejad, Seyed Nooreddin Faraji, Mohammad Reza Rahbar, Ahmad Gholami","doi":"10.1515/jib-2023-0053","DOIUrl":null,"url":null,"abstract":"<p><p>The glycoproteins 41 (gp41) of human immunodeficiency virus (HIV), located on the virus's external surface, form six-helix bundles that facilitate viral entry into the host cell. Theta defensins, cyclic peptides, inhibit the formation of these bundles by binding to the GP41 CHR region. RC101, a synthetic analog of theta-defensin molecules, exhibits activity against various HIV subtypes. Molecular docking of the CHR and RC101 was done using MDockPeP and Hawdock server. The type of bonds and the essential amino acids in binding were identified using AlphaFold3, CHIMERA, RING, and CYTOSCAPE. Mutable amino acids within the peptide were determined using the CUPSAT and Duet. Thirty-two new peptides were designed, and their interaction with the CHR of the gp41 was analyzed. The physicochemical properties, toxicity, allergenicity, and antigenicity of peptides were also investigated. Most of the designed peptides exhibited higher binding affinities to the target compared to RC101; notably, peptides 1 and 4 had the highest binding affinity and demonstrated a greater percentage of interactions with critical amino acids of CHR. Peptides A and E displayed the best physiochemical properties among designed peptides. The designed peptides may present a new generation of anti-HIV drugs, which may reduce the likelihood of drug resistance.</p>","PeriodicalId":53625,"journal":{"name":"Journal of Integrative Bioinformatics","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing an optimized theta-defensin peptide for HIV therapy using in-silico approaches.\",\"authors\":\"Zahra Mosalanejad, Seyed Nooreddin Faraji, Mohammad Reza Rahbar, Ahmad Gholami\",\"doi\":\"10.1515/jib-2023-0053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The glycoproteins 41 (gp41) of human immunodeficiency virus (HIV), located on the virus's external surface, form six-helix bundles that facilitate viral entry into the host cell. Theta defensins, cyclic peptides, inhibit the formation of these bundles by binding to the GP41 CHR region. RC101, a synthetic analog of theta-defensin molecules, exhibits activity against various HIV subtypes. Molecular docking of the CHR and RC101 was done using MDockPeP and Hawdock server. The type of bonds and the essential amino acids in binding were identified using AlphaFold3, CHIMERA, RING, and CYTOSCAPE. Mutable amino acids within the peptide were determined using the CUPSAT and Duet. Thirty-two new peptides were designed, and their interaction with the CHR of the gp41 was analyzed. The physicochemical properties, toxicity, allergenicity, and antigenicity of peptides were also investigated. Most of the designed peptides exhibited higher binding affinities to the target compared to RC101; notably, peptides 1 and 4 had the highest binding affinity and demonstrated a greater percentage of interactions with critical amino acids of CHR. Peptides A and E displayed the best physiochemical properties among designed peptides. The designed peptides may present a new generation of anti-HIV drugs, which may reduce the likelihood of drug resistance.</p>\",\"PeriodicalId\":53625,\"journal\":{\"name\":\"Journal of Integrative Bioinformatics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Bioinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jib-2023-0053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Bioinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jib-2023-0053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类免疫缺陷病毒(HIV)的糖蛋白41 (gp41)位于病毒的外表面,形成六螺旋束,促进病毒进入宿主细胞。Theta防御素,即环肽,通过与GP41 CHR区域结合来抑制这些束的形成。RC101是一种合成的防御素分子类似物,显示出对各种HIV亚型的活性。利用MDockPeP和Hawdock server对CHR和RC101进行分子对接。使用AlphaFold3、CHIMERA、RING和CYTOSCAPE鉴定了键的类型和结合的必需氨基酸。使用CUPSAT和Duet测定肽内的可变氨基酸。设计了32个新多肽,并分析了它们与gp41的CHR的相互作用。研究了多肽的理化性质、毒性、致敏性和抗原性。与RC101相比,大多数设计的肽与靶标的结合亲和力更高;值得注意的是,肽1和4具有最高的结合亲和力,并且与CHR关键氨基酸的相互作用百分比更高。多肽A和E在设计的多肽中表现出最好的理化性质。设计的多肽可能是新一代抗hiv药物,可能降低耐药的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing an optimized theta-defensin peptide for HIV therapy using in-silico approaches.

The glycoproteins 41 (gp41) of human immunodeficiency virus (HIV), located on the virus's external surface, form six-helix bundles that facilitate viral entry into the host cell. Theta defensins, cyclic peptides, inhibit the formation of these bundles by binding to the GP41 CHR region. RC101, a synthetic analog of theta-defensin molecules, exhibits activity against various HIV subtypes. Molecular docking of the CHR and RC101 was done using MDockPeP and Hawdock server. The type of bonds and the essential amino acids in binding were identified using AlphaFold3, CHIMERA, RING, and CYTOSCAPE. Mutable amino acids within the peptide were determined using the CUPSAT and Duet. Thirty-two new peptides were designed, and their interaction with the CHR of the gp41 was analyzed. The physicochemical properties, toxicity, allergenicity, and antigenicity of peptides were also investigated. Most of the designed peptides exhibited higher binding affinities to the target compared to RC101; notably, peptides 1 and 4 had the highest binding affinity and demonstrated a greater percentage of interactions with critical amino acids of CHR. Peptides A and E displayed the best physiochemical properties among designed peptides. The designed peptides may present a new generation of anti-HIV drugs, which may reduce the likelihood of drug resistance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integrative Bioinformatics
Journal of Integrative Bioinformatics Medicine-Medicine (all)
CiteScore
3.10
自引率
5.30%
发文量
27
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信