MO-SMAC:多目标序列模型算法配置。

IF 4.6 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jeroen G Rook, Carolin Benjamins, Jakob Bossek, Heike Trautmann, Holger H Hoos, Marius Lindauer
{"title":"MO-SMAC:多目标序列模型算法配置。","authors":"Jeroen G Rook, Carolin Benjamins, Jakob Bossek, Heike Trautmann, Holger H Hoos, Marius Lindauer","doi":"10.1162/evco_a_00371","DOIUrl":null,"url":null,"abstract":"<p><p>Automated algorithm configuration aims at finding well-performing parameter configurations for a given problem, and it has proven to be effective within many AI domains, including evolutionary computation. Initially, the focus was on excelling in one performance objective, but, in reality, most tasks have a variety of (conflicting) objectives. The surging demand for trustworthy and resource-efficient AI systems makes this multi-objective perspective even more prevalent. We propose a new general-purpose multi-objective automated algorithm configurator by extending the widely-used SMAC framework. Instead of finding a single configuration, we search for a non-dominated set that approximates the actual Pareto set. We propose a pure multi-objective Bayesian Optimisation approach for obtaining promising configurations by using the predicted hypervolume improvement as acquisition function. We also present a novel intensification procedure to efficiently handle the selection of configurations in a multi-objective context. Our approach is empirically validated and compared across various configuration scenarios in four AI domains, demonstrating superiority over baseline methods, competitiveness with MO-ParamILS on individual scenarios and an overall best performance.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":" ","pages":"1-25"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MO-SMAC: Multi-objective Sequential Model-based Algorithm Configuration.\",\"authors\":\"Jeroen G Rook, Carolin Benjamins, Jakob Bossek, Heike Trautmann, Holger H Hoos, Marius Lindauer\",\"doi\":\"10.1162/evco_a_00371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Automated algorithm configuration aims at finding well-performing parameter configurations for a given problem, and it has proven to be effective within many AI domains, including evolutionary computation. Initially, the focus was on excelling in one performance objective, but, in reality, most tasks have a variety of (conflicting) objectives. The surging demand for trustworthy and resource-efficient AI systems makes this multi-objective perspective even more prevalent. We propose a new general-purpose multi-objective automated algorithm configurator by extending the widely-used SMAC framework. Instead of finding a single configuration, we search for a non-dominated set that approximates the actual Pareto set. We propose a pure multi-objective Bayesian Optimisation approach for obtaining promising configurations by using the predicted hypervolume improvement as acquisition function. We also present a novel intensification procedure to efficiently handle the selection of configurations in a multi-objective context. Our approach is empirically validated and compared across various configuration scenarios in four AI domains, demonstrating superiority over baseline methods, competitiveness with MO-ParamILS on individual scenarios and an overall best performance.</p>\",\"PeriodicalId\":50470,\"journal\":{\"name\":\"Evolutionary Computation\",\"volume\":\" \",\"pages\":\"1-25\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1162/evco_a_00371\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00371","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

自动算法配置旨在为给定问题找到性能良好的参数配置,并且已被证明在许多人工智能领域(包括进化计算)是有效的。最初,重点是在一个性能目标上取得优异成绩,但实际上,大多数任务都有各种各样的(相互冲突的)目标。对可信赖和资源高效的人工智能系统的需求激增,使得这种多目标视角更加普遍。我们通过扩展广泛使用的SMAC框架,提出了一种新的通用多目标自动算法配置器。我们不是寻找一个单一的配置,而是寻找一个近似于实际帕累托集的非支配集。我们提出了一种纯多目标贝叶斯优化方法,通过使用预测的超体积改进作为获取函数来获得有希望的配置。我们还提出了一种新的强化方法来有效地处理多目标环境下的配置选择。我们的方法经过了经验验证,并在四个人工智能领域的各种配置场景中进行了比较,证明了优于基线方法的优势,在个别场景中与MO-ParamILS的竞争力以及总体最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MO-SMAC: Multi-objective Sequential Model-based Algorithm Configuration.

Automated algorithm configuration aims at finding well-performing parameter configurations for a given problem, and it has proven to be effective within many AI domains, including evolutionary computation. Initially, the focus was on excelling in one performance objective, but, in reality, most tasks have a variety of (conflicting) objectives. The surging demand for trustworthy and resource-efficient AI systems makes this multi-objective perspective even more prevalent. We propose a new general-purpose multi-objective automated algorithm configurator by extending the widely-used SMAC framework. Instead of finding a single configuration, we search for a non-dominated set that approximates the actual Pareto set. We propose a pure multi-objective Bayesian Optimisation approach for obtaining promising configurations by using the predicted hypervolume improvement as acquisition function. We also present a novel intensification procedure to efficiently handle the selection of configurations in a multi-objective context. Our approach is empirically validated and compared across various configuration scenarios in four AI domains, demonstrating superiority over baseline methods, competitiveness with MO-ParamILS on individual scenarios and an overall best performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Computation
Evolutionary Computation 工程技术-计算机:理论方法
CiteScore
6.40
自引率
1.50%
发文量
20
审稿时长
3 months
期刊介绍: Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信