用毛细管镜观察小鼠钉状微血管形态的无创可视化。

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Olivia L Bossardet, Clara C Cousins, Joseph M Holden, Vincent Yao, Kristin L Clark, Louis R Pasquale, Emmanuel S Buys, Lauren K Wareham
{"title":"用毛细管镜观察小鼠钉状微血管形态的无创可视化。","authors":"Olivia L Bossardet, Clara C Cousins, Joseph M Holden, Vincent Yao, Kristin L Clark, Louis R Pasquale, Emmanuel S Buys, Lauren K Wareham","doi":"10.3791/67529","DOIUrl":null,"url":null,"abstract":"<p><p>Imaging microcapillary networks of the skin in humans using nailfold capillaroscopy (NFC) has underscored the importance of microcirculation as a target organ system in critical systemic illnesses. Nailfold capillaroscopy is applied clinically to detect peripheral microvascular dysfunction and abnormalities in a range of systemic conditions, including rheumatic, cardiac, ocular (e.g., glaucoma), and endocrine disorders (e.g., hypertension and diabetes mellitus). NFC is useful not only in detecting peripheral systemic microvasculature disruption but also in assessing drug efficacy. However, translating clinical NFC findings to animal disease models can be challenging. Detecting microvascular dysfunction or abnormalities in animals is often invasive (e.g., endoscopic), carried out ex vivo (e.g., post-mortem imaging of tissues), or expensive, requiring specialized equipment such as those used in microcomputed tomography and photoacoustic imaging techniques. Developing quick, non-invasive, and inexpensive techniques to image peripheral microvasculature in animal models of disease is warranted to decrease research expenses and increase translatability to the clinic. Capillaroscopy has previously been used to visualize the nailfold microvasculature in animal models, including in guinea pigs and mice, thus demonstrating the capability of capillaroscopy as a non-invasive imaging tool in animal models. This study provides a protocol that applies capillaroscopy to a mouse nailbed, allowing researchers to easily and inexpensively assess the morphology of its microvasculature. Representative images of typical nailbed microvascular architecture in wild-type mice using two commonly used laboratory strains, SV129/S6 and C57/B6J, are provided. Further studies using this method are essential for applying nailbed capillaroscopy to a wide range of mouse disease models with peripheral microvascular abnormalities.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Invasive Visualization of Nailbed Microvascular Morphology in Mice Using Capillaroscopy.\",\"authors\":\"Olivia L Bossardet, Clara C Cousins, Joseph M Holden, Vincent Yao, Kristin L Clark, Louis R Pasquale, Emmanuel S Buys, Lauren K Wareham\",\"doi\":\"10.3791/67529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Imaging microcapillary networks of the skin in humans using nailfold capillaroscopy (NFC) has underscored the importance of microcirculation as a target organ system in critical systemic illnesses. Nailfold capillaroscopy is applied clinically to detect peripheral microvascular dysfunction and abnormalities in a range of systemic conditions, including rheumatic, cardiac, ocular (e.g., glaucoma), and endocrine disorders (e.g., hypertension and diabetes mellitus). NFC is useful not only in detecting peripheral systemic microvasculature disruption but also in assessing drug efficacy. However, translating clinical NFC findings to animal disease models can be challenging. Detecting microvascular dysfunction or abnormalities in animals is often invasive (e.g., endoscopic), carried out ex vivo (e.g., post-mortem imaging of tissues), or expensive, requiring specialized equipment such as those used in microcomputed tomography and photoacoustic imaging techniques. Developing quick, non-invasive, and inexpensive techniques to image peripheral microvasculature in animal models of disease is warranted to decrease research expenses and increase translatability to the clinic. Capillaroscopy has previously been used to visualize the nailfold microvasculature in animal models, including in guinea pigs and mice, thus demonstrating the capability of capillaroscopy as a non-invasive imaging tool in animal models. This study provides a protocol that applies capillaroscopy to a mouse nailbed, allowing researchers to easily and inexpensively assess the morphology of its microvasculature. Representative images of typical nailbed microvascular architecture in wild-type mice using two commonly used laboratory strains, SV129/S6 and C57/B6J, are provided. Further studies using this method are essential for applying nailbed capillaroscopy to a wide range of mouse disease models with peripheral microvascular abnormalities.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 216\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/67529\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67529","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

利用甲襞毛细血管镜(NFC)成像人类皮肤的微血管网络,强调了微循环作为关键全身性疾病靶器官系统的重要性。甲襞毛细血管镜在临床上用于检测周围微血管功能障碍和一系列全身疾病的异常,包括风湿病、心脏、眼部(如青光眼)和内分泌疾病(如高血压和糖尿病)。NFC不仅可用于检测外周系统微血管破坏,还可用于评估药物疗效。然而,将临床NFC研究结果转化为动物疾病模型可能具有挑战性。检测动物微血管功能障碍或异常通常是侵入性的(例如,内窥镜),在体外进行(例如,死后组织成像),或者是昂贵的,需要专门的设备,例如用于微型计算机断层扫描和光声成像技术的设备。在动物疾病模型中开发快速、无创、廉价的外周微血管成像技术,可以减少研究费用,提高临床可转译性。毛细管镜已经在动物模型(包括豚鼠和小鼠)中用于观察甲襞微血管,从而证明了毛细管镜作为动物模型非侵入性成像工具的能力。这项研究提供了一种将毛细血管镜应用于小鼠指甲的方案,使研究人员能够轻松、廉价地评估其微血管的形态。本文提供了两种常用实验室菌株SV129/S6和C57/B6J野生型小鼠典型钉状微血管结构的代表性图像。使用这种方法的进一步研究对于将钉状毛细血管镜应用于广泛的周围微血管异常的小鼠疾病模型至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Invasive Visualization of Nailbed Microvascular Morphology in Mice Using Capillaroscopy.

Imaging microcapillary networks of the skin in humans using nailfold capillaroscopy (NFC) has underscored the importance of microcirculation as a target organ system in critical systemic illnesses. Nailfold capillaroscopy is applied clinically to detect peripheral microvascular dysfunction and abnormalities in a range of systemic conditions, including rheumatic, cardiac, ocular (e.g., glaucoma), and endocrine disorders (e.g., hypertension and diabetes mellitus). NFC is useful not only in detecting peripheral systemic microvasculature disruption but also in assessing drug efficacy. However, translating clinical NFC findings to animal disease models can be challenging. Detecting microvascular dysfunction or abnormalities in animals is often invasive (e.g., endoscopic), carried out ex vivo (e.g., post-mortem imaging of tissues), or expensive, requiring specialized equipment such as those used in microcomputed tomography and photoacoustic imaging techniques. Developing quick, non-invasive, and inexpensive techniques to image peripheral microvasculature in animal models of disease is warranted to decrease research expenses and increase translatability to the clinic. Capillaroscopy has previously been used to visualize the nailfold microvasculature in animal models, including in guinea pigs and mice, thus demonstrating the capability of capillaroscopy as a non-invasive imaging tool in animal models. This study provides a protocol that applies capillaroscopy to a mouse nailbed, allowing researchers to easily and inexpensively assess the morphology of its microvasculature. Representative images of typical nailbed microvascular architecture in wild-type mice using two commonly used laboratory strains, SV129/S6 and C57/B6J, are provided. Further studies using this method are essential for applying nailbed capillaroscopy to a wide range of mouse disease models with peripheral microvascular abnormalities.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信