新生儿兔包中脑电图和心电图遥测装置的植入。

IF 1.2 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Julie Ziobro, Dalis Collins, Chunling Chen, Yan Chen, Luis F Lopez-Santiago, Gail Rising, Amber Yanovich, Jack M Parent, Lori L Isom
{"title":"新生儿兔包中脑电图和心电图遥测装置的植入。","authors":"Julie Ziobro, Dalis Collins, Chunling Chen, Yan Chen, Luis F Lopez-Santiago, Gail Rising, Amber Yanovich, Jack M Parent, Lori L Isom","doi":"10.3791/67740","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic variants in ion channel genes are associated with a high rate of sudden unexpected death in epilepsy (SUDEP). Mechanisms of SUDEP are poorly understood but may involve autonomic dysfunction and cardiac arrhythmias in addition to seizures. Some ion-channel genes are expressed in both the brain and the heart, potentially increasing the risk of SUDEP in patients with ion-channelopathies associated with epilepsy and cardiac arrhythmias. Transgenic rabbits expressing epilepsy variants provide a whole organism to study the complex physiology of SUDEP. Importantly, rabbits more closely replicate human cardiac physiology than do mouse models. However, rabbit models have additional health and anesthesia considerations when undergoing invasive monitoring procedures. We have developed a novel method to surgically implant a telemetry device for long-term simultaneous electroencephalogram (EEG) and electrocardiogram (ECG) monitoring in neonatal rabbit kits. Here, we demonstrate surgical methods to implant a telemetry device in P14 (weight range 175-250 g) kits with detailed attention to surgical approach, appropriate anesthesia and monitoring, and postoperative care, resulting in a low complication rate. This method allows for continuous monitoring of neural and cardiac electrophysiology during critical points in the development of cardiac arrhythmias, seizures, and potential SUDEP in rabbit models of genetic or acquired epilepsies.</p>","PeriodicalId":48787,"journal":{"name":"Jove-Journal of Visualized Experiments","volume":" 216","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implantation of Electroencephalogram and Electrocardiogram Telemetry Devices in Neonatal Rabbit Kits.\",\"authors\":\"Julie Ziobro, Dalis Collins, Chunling Chen, Yan Chen, Luis F Lopez-Santiago, Gail Rising, Amber Yanovich, Jack M Parent, Lori L Isom\",\"doi\":\"10.3791/67740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pathogenic variants in ion channel genes are associated with a high rate of sudden unexpected death in epilepsy (SUDEP). Mechanisms of SUDEP are poorly understood but may involve autonomic dysfunction and cardiac arrhythmias in addition to seizures. Some ion-channel genes are expressed in both the brain and the heart, potentially increasing the risk of SUDEP in patients with ion-channelopathies associated with epilepsy and cardiac arrhythmias. Transgenic rabbits expressing epilepsy variants provide a whole organism to study the complex physiology of SUDEP. Importantly, rabbits more closely replicate human cardiac physiology than do mouse models. However, rabbit models have additional health and anesthesia considerations when undergoing invasive monitoring procedures. We have developed a novel method to surgically implant a telemetry device for long-term simultaneous electroencephalogram (EEG) and electrocardiogram (ECG) monitoring in neonatal rabbit kits. Here, we demonstrate surgical methods to implant a telemetry device in P14 (weight range 175-250 g) kits with detailed attention to surgical approach, appropriate anesthesia and monitoring, and postoperative care, resulting in a low complication rate. This method allows for continuous monitoring of neural and cardiac electrophysiology during critical points in the development of cardiac arrhythmias, seizures, and potential SUDEP in rabbit models of genetic or acquired epilepsies.</p>\",\"PeriodicalId\":48787,\"journal\":{\"name\":\"Jove-Journal of Visualized Experiments\",\"volume\":\" 216\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jove-Journal of Visualized Experiments\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3791/67740\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jove-Journal of Visualized Experiments","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3791/67740","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

离子通道基因的致病性变异与癫痫猝死(SUDEP)的高发率有关。SUDEP的机制尚不清楚,但除癫痫发作外,还可能涉及自主神经功能障碍和心律失常。一些离子通道基因在大脑和心脏中都有表达,这可能会增加与癫痫和心律失常相关的离子通道病变患者发生SUDEP的风险。表达癫痫变异的转基因家兔为研究SUDEP的复杂生理提供了一个完整的机体。重要的是,兔子比小鼠模型更接近人类心脏生理学。然而,兔模型在进行侵入性监测程序时需要额外的健康和麻醉考虑。我们开发了一种新的方法,通过手术植入遥测装置,用于新生儿兔组的长期同时脑电图(EEG)和心电图(ECG)监测。在这里,我们展示了在P14(重量范围175-250 g)套件中植入遥测装置的手术方法,并详细注意手术入路,适当的麻醉和监测以及术后护理,从而降低了并发症发生率。该方法允许在遗传性或获得性癫痫兔模型中发生心律失常、癫痫发作和潜在SUDEP的关键时刻连续监测神经和心脏电生理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Implantation of Electroencephalogram and Electrocardiogram Telemetry Devices in Neonatal Rabbit Kits.

Pathogenic variants in ion channel genes are associated with a high rate of sudden unexpected death in epilepsy (SUDEP). Mechanisms of SUDEP are poorly understood but may involve autonomic dysfunction and cardiac arrhythmias in addition to seizures. Some ion-channel genes are expressed in both the brain and the heart, potentially increasing the risk of SUDEP in patients with ion-channelopathies associated with epilepsy and cardiac arrhythmias. Transgenic rabbits expressing epilepsy variants provide a whole organism to study the complex physiology of SUDEP. Importantly, rabbits more closely replicate human cardiac physiology than do mouse models. However, rabbit models have additional health and anesthesia considerations when undergoing invasive monitoring procedures. We have developed a novel method to surgically implant a telemetry device for long-term simultaneous electroencephalogram (EEG) and electrocardiogram (ECG) monitoring in neonatal rabbit kits. Here, we demonstrate surgical methods to implant a telemetry device in P14 (weight range 175-250 g) kits with detailed attention to surgical approach, appropriate anesthesia and monitoring, and postoperative care, resulting in a low complication rate. This method allows for continuous monitoring of neural and cardiac electrophysiology during critical points in the development of cardiac arrhythmias, seizures, and potential SUDEP in rabbit models of genetic or acquired epilepsies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Jove-Journal of Visualized Experiments
Jove-Journal of Visualized Experiments MULTIDISCIPLINARY SCIENCES-
CiteScore
2.10
自引率
0.00%
发文量
992
期刊介绍: JoVE, the Journal of Visualized Experiments, is the world''s first peer reviewed scientific video journal. Established in 2006, JoVE is devoted to publishing scientific research in a visual format to help researchers overcome two of the biggest challenges facing the scientific research community today; poor reproducibility and the time and labor intensive nature of learning new experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信