Lucia Absalom Bautista, Timotej Hrga, Janez Povh, Shudian Zhao
{"title":"地面真实聚类并非最佳聚类。","authors":"Lucia Absalom Bautista, Timotej Hrga, Janez Povh, Shudian Zhao","doi":"10.1038/s41598-025-90865-9","DOIUrl":null,"url":null,"abstract":"<p><p>Data clustering is a fundamental yet challenging task in data science. The minimum sum-of-squares clustering (MSSC) problem aims to partition data points into k clusters to minimize the sum of squared distances between the points and their cluster centers (centroids). Despite being NP-hard, solvers exist that can compute optimal solutions for small to medium-sized datasets. One such solver is SOS-SDP, a branch-and-bound algorithm based on semidefinite programming. We used it to obtain optimal MSSC solutions (optimum clusterings) for various k across multiple datasets with known ground truth clusterings. We evaluated the alignment between the optimum and ground truth clusterings using six extrinsic measures and assessed their quality using three intrinsic measures. The results reveal that the optimum clusterings often differ significantly from the ground truth clusterings. Additionally, the optimum clusterings frequently outperform the ground truth clusterings, according to the intrinsic measures that we used. However, when ground truth clusters are well-separated convex shapes, such as ellipsoids, the optimum and ground truth clusterings closely align.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9223"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914496/pdf/","citationCount":"0","resultStr":"{\"title\":\"Ground truth clustering is not the optimum clustering.\",\"authors\":\"Lucia Absalom Bautista, Timotej Hrga, Janez Povh, Shudian Zhao\",\"doi\":\"10.1038/s41598-025-90865-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Data clustering is a fundamental yet challenging task in data science. The minimum sum-of-squares clustering (MSSC) problem aims to partition data points into k clusters to minimize the sum of squared distances between the points and their cluster centers (centroids). Despite being NP-hard, solvers exist that can compute optimal solutions for small to medium-sized datasets. One such solver is SOS-SDP, a branch-and-bound algorithm based on semidefinite programming. We used it to obtain optimal MSSC solutions (optimum clusterings) for various k across multiple datasets with known ground truth clusterings. We evaluated the alignment between the optimum and ground truth clusterings using six extrinsic measures and assessed their quality using three intrinsic measures. The results reveal that the optimum clusterings often differ significantly from the ground truth clusterings. Additionally, the optimum clusterings frequently outperform the ground truth clusterings, according to the intrinsic measures that we used. However, when ground truth clusters are well-separated convex shapes, such as ellipsoids, the optimum and ground truth clusterings closely align.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9223\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914496/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-90865-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-90865-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Ground truth clustering is not the optimum clustering.
Data clustering is a fundamental yet challenging task in data science. The minimum sum-of-squares clustering (MSSC) problem aims to partition data points into k clusters to minimize the sum of squared distances between the points and their cluster centers (centroids). Despite being NP-hard, solvers exist that can compute optimal solutions for small to medium-sized datasets. One such solver is SOS-SDP, a branch-and-bound algorithm based on semidefinite programming. We used it to obtain optimal MSSC solutions (optimum clusterings) for various k across multiple datasets with known ground truth clusterings. We evaluated the alignment between the optimum and ground truth clusterings using six extrinsic measures and assessed their quality using three intrinsic measures. The results reveal that the optimum clusterings often differ significantly from the ground truth clusterings. Additionally, the optimum clusterings frequently outperform the ground truth clusterings, according to the intrinsic measures that we used. However, when ground truth clusters are well-separated convex shapes, such as ellipsoids, the optimum and ground truth clusterings closely align.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.