{"title":"通过机器学习估计非药物干预措施对七个欧盟国家COVID-19传播的因果影响。","authors":"Jannis Guski, Jonas Botz, Holger Fröhlich","doi":"10.1038/s41598-025-88433-2","DOIUrl":null,"url":null,"abstract":"<p><p>During the COVID-19 pandemic, Non-Pharmaceutical Interventions (NPIs) were imposed all over Europe with the intent to reduce infection spread. However, reports on the effectiveness of those measures across different European countries are inconclusive up to now. Moreover, attempts to predict the effect of NPIs in a prospective and dynamical manner with the aim to support decision makers in future global health emergencies are largely lacking. Here, we explore causal machine learning to isolate causal effects of NPIs in observational public health data from seven EU countries, taking into account specific challenges like their sequential nature, effect heterogeneity, time-dependent confounding and lack of robustness due to violated assumptions. In a pseudo-prospective scenario planning analysis, we investigate which recommendations our model would have made during the second wave of the pandemic in Germany, demonstrating its capacity to generalize to the near future and identifying effective NPIs. In retrospect, our approach indicates that a wide range of response measures curbed COVID-19 across countries, especially in the early phases of the pandemic. Interestingly, this includes controversial interventions like strict school and border closures, but also recommendation-based policies in Sweden. Finally, we discuss important data- and modeling-related considerations that may optimize causal effect estimation in future pandemics.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9203"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914055/pdf/","citationCount":"0","resultStr":"{\"title\":\"Estimating the causal impact of non-pharmaceutical interventions on COVID-19 spread in seven EU countries via machine learning.\",\"authors\":\"Jannis Guski, Jonas Botz, Holger Fröhlich\",\"doi\":\"10.1038/s41598-025-88433-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the COVID-19 pandemic, Non-Pharmaceutical Interventions (NPIs) were imposed all over Europe with the intent to reduce infection spread. However, reports on the effectiveness of those measures across different European countries are inconclusive up to now. Moreover, attempts to predict the effect of NPIs in a prospective and dynamical manner with the aim to support decision makers in future global health emergencies are largely lacking. Here, we explore causal machine learning to isolate causal effects of NPIs in observational public health data from seven EU countries, taking into account specific challenges like their sequential nature, effect heterogeneity, time-dependent confounding and lack of robustness due to violated assumptions. In a pseudo-prospective scenario planning analysis, we investigate which recommendations our model would have made during the second wave of the pandemic in Germany, demonstrating its capacity to generalize to the near future and identifying effective NPIs. In retrospect, our approach indicates that a wide range of response measures curbed COVID-19 across countries, especially in the early phases of the pandemic. Interestingly, this includes controversial interventions like strict school and border closures, but also recommendation-based policies in Sweden. Finally, we discuss important data- and modeling-related considerations that may optimize causal effect estimation in future pandemics.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9203\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914055/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-88433-2\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-88433-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Estimating the causal impact of non-pharmaceutical interventions on COVID-19 spread in seven EU countries via machine learning.
During the COVID-19 pandemic, Non-Pharmaceutical Interventions (NPIs) were imposed all over Europe with the intent to reduce infection spread. However, reports on the effectiveness of those measures across different European countries are inconclusive up to now. Moreover, attempts to predict the effect of NPIs in a prospective and dynamical manner with the aim to support decision makers in future global health emergencies are largely lacking. Here, we explore causal machine learning to isolate causal effects of NPIs in observational public health data from seven EU countries, taking into account specific challenges like their sequential nature, effect heterogeneity, time-dependent confounding and lack of robustness due to violated assumptions. In a pseudo-prospective scenario planning analysis, we investigate which recommendations our model would have made during the second wave of the pandemic in Germany, demonstrating its capacity to generalize to the near future and identifying effective NPIs. In retrospect, our approach indicates that a wide range of response measures curbed COVID-19 across countries, especially in the early phases of the pandemic. Interestingly, this includes controversial interventions like strict school and border closures, but also recommendation-based policies in Sweden. Finally, we discuss important data- and modeling-related considerations that may optimize causal effect estimation in future pandemics.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.