Yasser F Ali, Ibrahim M Hassan, Hussein M Abdelhafez, Omar S Desouky
{"title":"0.5Gy通过调节HO-1/Nrf2和细胞凋亡通路,增强对后续高剂量γ射线的抵抗力。","authors":"Yasser F Ali, Ibrahim M Hassan, Hussein M Abdelhafez, Omar S Desouky","doi":"10.1038/s41598-025-91667-9","DOIUrl":null,"url":null,"abstract":"<p><p>Ionizing radiation, from the DNA centric view, elicits biological effects and health consequences solely through energy deposition events in the cell nucleus. At higher radiation doses, this is likely true; however, at low doses, non-targeted effects, a subcategory of which is the adaptive response, tend to dominate. Controversies exist over the definition of low dose. From a radiation therapy view, it is defined as 0.5-0.7 Gy. Therefore, we investigated the effects of exposure to ionizing radiation with or without a 0.5 Gy priming dose. Techniques including comet assay, flow cytometry, fluorescence microscopy, and real-time quantitative PCR were employed. In normal lung fibroblasts (WI-38), there was a statistically significant difference in mean normalized tail moments when comparing treatment with the challenge dose alone to treatment with a 0.5 Gy priming dose prior to the challenge dose (P < 0.05). Moreover, pretreatment with a 0.5 Gy priming dose reduced G1 phase cell cycle arrest and cell death-either through apoptosis or mitotic catastrophe-induced by the subsequent 2 Gy exposure. Similarly, A549 Cells pre-exposed to a 0.5 Gy priming dose before a 2 Gy exposure showed a lower percentage of apoptosis than those exposed to the 2 Gy alone. Mechanistically, cells responded to a priming 0.5 Gy by increasing the expression of HMOX1, SOD, and Bcl2 while decreasing of IL-1β and TNF-α. In conclusion, 0.5 Gy induces an adaptive response in lung normal and cancer cell against subsequent high doses of γ-rays. Modulation of the HO-1/Nrf2 and apoptosis pathways underlie the resistance observed in primed cells.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9199"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914414/pdf/","citationCount":"0","resultStr":"{\"title\":\"0.5 Gy confers resistance to a subsequent high dose of γ-rays by modulating HO-1/Nrf2 and apoptosis pathways.\",\"authors\":\"Yasser F Ali, Ibrahim M Hassan, Hussein M Abdelhafez, Omar S Desouky\",\"doi\":\"10.1038/s41598-025-91667-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ionizing radiation, from the DNA centric view, elicits biological effects and health consequences solely through energy deposition events in the cell nucleus. At higher radiation doses, this is likely true; however, at low doses, non-targeted effects, a subcategory of which is the adaptive response, tend to dominate. Controversies exist over the definition of low dose. From a radiation therapy view, it is defined as 0.5-0.7 Gy. Therefore, we investigated the effects of exposure to ionizing radiation with or without a 0.5 Gy priming dose. Techniques including comet assay, flow cytometry, fluorescence microscopy, and real-time quantitative PCR were employed. In normal lung fibroblasts (WI-38), there was a statistically significant difference in mean normalized tail moments when comparing treatment with the challenge dose alone to treatment with a 0.5 Gy priming dose prior to the challenge dose (P < 0.05). Moreover, pretreatment with a 0.5 Gy priming dose reduced G1 phase cell cycle arrest and cell death-either through apoptosis or mitotic catastrophe-induced by the subsequent 2 Gy exposure. Similarly, A549 Cells pre-exposed to a 0.5 Gy priming dose before a 2 Gy exposure showed a lower percentage of apoptosis than those exposed to the 2 Gy alone. Mechanistically, cells responded to a priming 0.5 Gy by increasing the expression of HMOX1, SOD, and Bcl2 while decreasing of IL-1β and TNF-α. In conclusion, 0.5 Gy induces an adaptive response in lung normal and cancer cell against subsequent high doses of γ-rays. Modulation of the HO-1/Nrf2 and apoptosis pathways underlie the resistance observed in primed cells.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9199\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914414/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-91667-9\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-91667-9","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
0.5 Gy confers resistance to a subsequent high dose of γ-rays by modulating HO-1/Nrf2 and apoptosis pathways.
Ionizing radiation, from the DNA centric view, elicits biological effects and health consequences solely through energy deposition events in the cell nucleus. At higher radiation doses, this is likely true; however, at low doses, non-targeted effects, a subcategory of which is the adaptive response, tend to dominate. Controversies exist over the definition of low dose. From a radiation therapy view, it is defined as 0.5-0.7 Gy. Therefore, we investigated the effects of exposure to ionizing radiation with or without a 0.5 Gy priming dose. Techniques including comet assay, flow cytometry, fluorescence microscopy, and real-time quantitative PCR were employed. In normal lung fibroblasts (WI-38), there was a statistically significant difference in mean normalized tail moments when comparing treatment with the challenge dose alone to treatment with a 0.5 Gy priming dose prior to the challenge dose (P < 0.05). Moreover, pretreatment with a 0.5 Gy priming dose reduced G1 phase cell cycle arrest and cell death-either through apoptosis or mitotic catastrophe-induced by the subsequent 2 Gy exposure. Similarly, A549 Cells pre-exposed to a 0.5 Gy priming dose before a 2 Gy exposure showed a lower percentage of apoptosis than those exposed to the 2 Gy alone. Mechanistically, cells responded to a priming 0.5 Gy by increasing the expression of HMOX1, SOD, and Bcl2 while decreasing of IL-1β and TNF-α. In conclusion, 0.5 Gy induces an adaptive response in lung normal and cancer cell against subsequent high doses of γ-rays. Modulation of the HO-1/Nrf2 and apoptosis pathways underlie the resistance observed in primed cells.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.