{"title":"人造自旋冰的回声态特性和记忆容量。","authors":"Tomohiro Taniguchi","doi":"10.1038/s41598-025-93189-w","DOIUrl":null,"url":null,"abstract":"<p><p>Physical reservoir computing by using artificial spin ice (ASI) has been proposed on the basis of both numerical and experimental analyses. ASI is a many-body system consisting of ferromagnets with various interactions. Recently, fabricating magnetic tunnel junctions (MTJs) as ferromagnets in an ASI was achieved in the experiment, which enables an electrical detection of magnetic state of each MTJ independently. However, performing a recognition task of time-dependent signal by such an MTJ-based ASI has not been reported yet. In this work, we examine numerical simulation of a recognition task of time-dependent input and evaluate short-term memory and parity-check capacities. These capacities change significantly when the magnitude of the input magnetic field is comparable to a value around which the magnetization alignment is greatly affected by the dipole interaction. It implies that the presence of the dipole interaction results in a loss of echo state property. This point was clarified by evaluating Lyapunov exponent and confirming that the drastic change of the memory capacities appears near the boundary between negative and zero exponents, which corresponds to the edge of echo state property.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9073"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914593/pdf/","citationCount":"0","resultStr":"{\"title\":\"Echo state property and memory capacity of artificial spin ice.\",\"authors\":\"Tomohiro Taniguchi\",\"doi\":\"10.1038/s41598-025-93189-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physical reservoir computing by using artificial spin ice (ASI) has been proposed on the basis of both numerical and experimental analyses. ASI is a many-body system consisting of ferromagnets with various interactions. Recently, fabricating magnetic tunnel junctions (MTJs) as ferromagnets in an ASI was achieved in the experiment, which enables an electrical detection of magnetic state of each MTJ independently. However, performing a recognition task of time-dependent signal by such an MTJ-based ASI has not been reported yet. In this work, we examine numerical simulation of a recognition task of time-dependent input and evaluate short-term memory and parity-check capacities. These capacities change significantly when the magnitude of the input magnetic field is comparable to a value around which the magnetization alignment is greatly affected by the dipole interaction. It implies that the presence of the dipole interaction results in a loss of echo state property. This point was clarified by evaluating Lyapunov exponent and confirming that the drastic change of the memory capacities appears near the boundary between negative and zero exponents, which corresponds to the edge of echo state property.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9073\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914593/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-93189-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93189-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Echo state property and memory capacity of artificial spin ice.
Physical reservoir computing by using artificial spin ice (ASI) has been proposed on the basis of both numerical and experimental analyses. ASI is a many-body system consisting of ferromagnets with various interactions. Recently, fabricating magnetic tunnel junctions (MTJs) as ferromagnets in an ASI was achieved in the experiment, which enables an electrical detection of magnetic state of each MTJ independently. However, performing a recognition task of time-dependent signal by such an MTJ-based ASI has not been reported yet. In this work, we examine numerical simulation of a recognition task of time-dependent input and evaluate short-term memory and parity-check capacities. These capacities change significantly when the magnitude of the input magnetic field is comparable to a value around which the magnetization alignment is greatly affected by the dipole interaction. It implies that the presence of the dipole interaction results in a loss of echo state property. This point was clarified by evaluating Lyapunov exponent and confirming that the drastic change of the memory capacities appears near the boundary between negative and zero exponents, which corresponds to the edge of echo state property.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.