人造自旋冰的回声态特性和记忆容量。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Tomohiro Taniguchi
{"title":"人造自旋冰的回声态特性和记忆容量。","authors":"Tomohiro Taniguchi","doi":"10.1038/s41598-025-93189-w","DOIUrl":null,"url":null,"abstract":"<p><p>Physical reservoir computing by using artificial spin ice (ASI) has been proposed on the basis of both numerical and experimental analyses. ASI is a many-body system consisting of ferromagnets with various interactions. Recently, fabricating magnetic tunnel junctions (MTJs) as ferromagnets in an ASI was achieved in the experiment, which enables an electrical detection of magnetic state of each MTJ independently. However, performing a recognition task of time-dependent signal by such an MTJ-based ASI has not been reported yet. In this work, we examine numerical simulation of a recognition task of time-dependent input and evaluate short-term memory and parity-check capacities. These capacities change significantly when the magnitude of the input magnetic field is comparable to a value around which the magnetization alignment is greatly affected by the dipole interaction. It implies that the presence of the dipole interaction results in a loss of echo state property. This point was clarified by evaluating Lyapunov exponent and confirming that the drastic change of the memory capacities appears near the boundary between negative and zero exponents, which corresponds to the edge of echo state property.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9073"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914593/pdf/","citationCount":"0","resultStr":"{\"title\":\"Echo state property and memory capacity of artificial spin ice.\",\"authors\":\"Tomohiro Taniguchi\",\"doi\":\"10.1038/s41598-025-93189-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Physical reservoir computing by using artificial spin ice (ASI) has been proposed on the basis of both numerical and experimental analyses. ASI is a many-body system consisting of ferromagnets with various interactions. Recently, fabricating magnetic tunnel junctions (MTJs) as ferromagnets in an ASI was achieved in the experiment, which enables an electrical detection of magnetic state of each MTJ independently. However, performing a recognition task of time-dependent signal by such an MTJ-based ASI has not been reported yet. In this work, we examine numerical simulation of a recognition task of time-dependent input and evaluate short-term memory and parity-check capacities. These capacities change significantly when the magnitude of the input magnetic field is comparable to a value around which the magnetization alignment is greatly affected by the dipole interaction. It implies that the presence of the dipole interaction results in a loss of echo state property. This point was clarified by evaluating Lyapunov exponent and confirming that the drastic change of the memory capacities appears near the boundary between negative and zero exponents, which corresponds to the edge of echo state property.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9073\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914593/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-93189-w\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93189-w","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在数值和实验分析的基础上,提出了利用人工自旋冰进行储层物理计算的方法。ASI是由具有多种相互作用的铁磁体组成的多体系统。最近,在实验中实现了在ASI中制造磁性隧道结(MTJ)作为铁磁体,从而可以对每个MTJ的磁状态进行独立的电检测。然而,由这种基于mtj的ASI执行时变信号识别任务尚未见报道。在这项工作中,我们研究了时间依赖输入的识别任务的数值模拟,并评估了短期记忆和奇偶校验能力。当输入磁场的大小与磁化方向受偶极相互作用影响较大的值相当时,这些容量会发生显著变化。这意味着偶极相互作用的存在会导致回波态性质的损失。通过计算Lyapunov指数澄清了这一点,确认在负指数和零指数边界附近出现了存储器容量的剧烈变化,对应于回波状态属性的边缘。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Echo state property and memory capacity of artificial spin ice.

Echo state property and memory capacity of artificial spin ice.

Echo state property and memory capacity of artificial spin ice.

Echo state property and memory capacity of artificial spin ice.

Physical reservoir computing by using artificial spin ice (ASI) has been proposed on the basis of both numerical and experimental analyses. ASI is a many-body system consisting of ferromagnets with various interactions. Recently, fabricating magnetic tunnel junctions (MTJs) as ferromagnets in an ASI was achieved in the experiment, which enables an electrical detection of magnetic state of each MTJ independently. However, performing a recognition task of time-dependent signal by such an MTJ-based ASI has not been reported yet. In this work, we examine numerical simulation of a recognition task of time-dependent input and evaluate short-term memory and parity-check capacities. These capacities change significantly when the magnitude of the input magnetic field is comparable to a value around which the magnetization alignment is greatly affected by the dipole interaction. It implies that the presence of the dipole interaction results in a loss of echo state property. This point was clarified by evaluating Lyapunov exponent and confirming that the drastic change of the memory capacities appears near the boundary between negative and zero exponents, which corresponds to the edge of echo state property.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信