基于元迁移学习的下肢多模态人体姿态估计。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-06 DOI:10.3390/s25051613
Guoming Du, Haiqi Zhu, Zhen Ding, Hong Huang, Xiaofeng Bie, Feng Jiang
{"title":"基于元迁移学习的下肢多模态人体姿态估计。","authors":"Guoming Du, Haiqi Zhu, Zhen Ding, Hong Huang, Xiaofeng Bie, Feng Jiang","doi":"10.3390/s25051613","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate and reliable human pose estimation (HPE) is essential in interactive systems, particularly for applications requiring personalized adaptation, such as controlling cooperative robots and wearable exoskeletons, especially for healthcare monitoring equipment. However, continuously maintaining diverse datasets and frequently updating models for individual adaptation are both resource intensive and time-consuming. To address these challenges, we propose a meta-transfer learning framework that integrates multimodal inputs, including high-frequency surface electromyography (sEMG), visual-inertial odometry (VIO), and high-precision image data. This framework improves both accuracy and stability through a knowledge fusion strategy, resolving the data alignment issue, ensuring seamless integration of different modalities. To further enhance adaptability, we introduce a training and adaptation framework with few-shot learning, facilitating efficient updating of encoders and decoders for dynamic feature adjustment in real-time applications. Experimental results demonstrate that our framework provides accurate, high-frequency pose estimations, particularly for intra-subject adaptation. Our approach enables efficient adaptation to new individuals with only a few new samples, providing an effective solution for personalized motion analysis with minimal data.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902308/pdf/","citationCount":"0","resultStr":"{\"title\":\"Meta-Transfer-Learning-Based Multimodal Human Pose Estimation for Lower Limbs.\",\"authors\":\"Guoming Du, Haiqi Zhu, Zhen Ding, Hong Huang, Xiaofeng Bie, Feng Jiang\",\"doi\":\"10.3390/s25051613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate and reliable human pose estimation (HPE) is essential in interactive systems, particularly for applications requiring personalized adaptation, such as controlling cooperative robots and wearable exoskeletons, especially for healthcare monitoring equipment. However, continuously maintaining diverse datasets and frequently updating models for individual adaptation are both resource intensive and time-consuming. To address these challenges, we propose a meta-transfer learning framework that integrates multimodal inputs, including high-frequency surface electromyography (sEMG), visual-inertial odometry (VIO), and high-precision image data. This framework improves both accuracy and stability through a knowledge fusion strategy, resolving the data alignment issue, ensuring seamless integration of different modalities. To further enhance adaptability, we introduce a training and adaptation framework with few-shot learning, facilitating efficient updating of encoders and decoders for dynamic feature adjustment in real-time applications. Experimental results demonstrate that our framework provides accurate, high-frequency pose estimations, particularly for intra-subject adaptation. Our approach enables efficient adaptation to new individuals with only a few new samples, providing an effective solution for personalized motion analysis with minimal data.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902308/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25051613\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051613","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

准确可靠的人体姿态估计(HPE)在交互式系统中至关重要,特别是对于需要个性化适应的应用,例如控制协作机器人和可穿戴外骨骼,特别是医疗监控设备。然而,持续维护不同的数据集和频繁更新模型以适应个体需要耗费大量资源和时间。为了解决这些挑战,我们提出了一个整合多模态输入的元迁移学习框架,包括高频表面肌电图(sEMG)、视觉惯性里程计(VIO)和高精度图像数据。该框架通过知识融合策略提高了准确性和稳定性,解决了数据对齐问题,确保了不同模式的无缝集成。为了进一步增强自适应能力,我们引入了一种基于少镜头学习的训练和自适应框架,促进了编码器和解码器的有效更新,以实现实时应用中的动态特征调整。实验结果表明,我们的框架提供了准确的,高频的姿态估计,特别是对主体内适应。我们的方法能够有效地适应新的个体,只有几个新的样本,提供了一个有效的解决方案,个性化的运动分析与最小的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Meta-Transfer-Learning-Based Multimodal Human Pose Estimation for Lower Limbs.

Accurate and reliable human pose estimation (HPE) is essential in interactive systems, particularly for applications requiring personalized adaptation, such as controlling cooperative robots and wearable exoskeletons, especially for healthcare monitoring equipment. However, continuously maintaining diverse datasets and frequently updating models for individual adaptation are both resource intensive and time-consuming. To address these challenges, we propose a meta-transfer learning framework that integrates multimodal inputs, including high-frequency surface electromyography (sEMG), visual-inertial odometry (VIO), and high-precision image data. This framework improves both accuracy and stability through a knowledge fusion strategy, resolving the data alignment issue, ensuring seamless integration of different modalities. To further enhance adaptability, we introduce a training and adaptation framework with few-shot learning, facilitating efficient updating of encoders and decoders for dynamic feature adjustment in real-time applications. Experimental results demonstrate that our framework provides accurate, high-frequency pose estimations, particularly for intra-subject adaptation. Our approach enables efficient adaptation to new individuals with only a few new samples, providing an effective solution for personalized motion analysis with minimal data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信