基于机器学习的复合地层盾构隧道下穿既有隧道地面沉降测量与预测

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-05 DOI:10.3390/s25051600
Mei Dong, Mingzhe Guan, Kuihua Wang, Yeyao Wu, Yuhan Fu
{"title":"基于机器学习的复合地层盾构隧道下穿既有隧道地面沉降测量与预测","authors":"Mei Dong, Mingzhe Guan, Kuihua Wang, Yeyao Wu, Yuhan Fu","doi":"10.3390/s25051600","DOIUrl":null,"url":null,"abstract":"<p><p>To address the issue of insufficient accuracy in traditional settlement prediction methods for shield tunneling undercrossing in composite strata in Hangzhou, this paper proposes a particle swarm optimization (PSO)-based Bidirectional Long Short-Term Memory neural network (Bi-LSTM) prediction model for high-precision dynamic prediction of ground settlement under small-sample conditions. Shield tunneling is a key method for urban tunnel construction. This paper presents the measurement and prediction of ground settlement caused by shield tunneling undercrossing existing tunnels in composite strata in Hangzhou. The longitudinal ground settlement curve resulting from shield tunnel excavation was analyzed using measured data, and the measured lateral ground settlement was compared with the Peck empirical formula. Using PSO, the performance of three machine learning models in predicting the maximum ground settlement at monitoring points was compared: Long Short-Term Memory neural network (LSTM), Gated Recurrent Unit neural network (GRU), and Bi-LSTM. The linear relationships between different input parameters and between input parameters and the output parameter were analyzed using the Pearson correlation coefficient. Based on this analysis, the model was optimized, and its prediction performance before and after optimization was compared. The results show that the Bi-LSTM model optimized with the PSO algorithm demonstrates superior performance, achieving both accuracy and stability.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902418/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Measurement and Prediction of Ground Settlement Induced by Shield Tunneling Undercrossing Existing Tunnels in Composite Strata.\",\"authors\":\"Mei Dong, Mingzhe Guan, Kuihua Wang, Yeyao Wu, Yuhan Fu\",\"doi\":\"10.3390/s25051600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To address the issue of insufficient accuracy in traditional settlement prediction methods for shield tunneling undercrossing in composite strata in Hangzhou, this paper proposes a particle swarm optimization (PSO)-based Bidirectional Long Short-Term Memory neural network (Bi-LSTM) prediction model for high-precision dynamic prediction of ground settlement under small-sample conditions. Shield tunneling is a key method for urban tunnel construction. This paper presents the measurement and prediction of ground settlement caused by shield tunneling undercrossing existing tunnels in composite strata in Hangzhou. The longitudinal ground settlement curve resulting from shield tunnel excavation was analyzed using measured data, and the measured lateral ground settlement was compared with the Peck empirical formula. Using PSO, the performance of three machine learning models in predicting the maximum ground settlement at monitoring points was compared: Long Short-Term Memory neural network (LSTM), Gated Recurrent Unit neural network (GRU), and Bi-LSTM. The linear relationships between different input parameters and between input parameters and the output parameter were analyzed using the Pearson correlation coefficient. Based on this analysis, the model was optimized, and its prediction performance before and after optimization was compared. The results show that the Bi-LSTM model optimized with the PSO algorithm demonstrates superior performance, achieving both accuracy and stability.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902418/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25051600\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051600","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

针对杭州地区复合地层盾构下交隧道传统沉降预测方法精度不足的问题,提出了一种基于粒子群优化(PSO)的双向长短期记忆神经网络(Bi-LSTM)预测模型,用于小样本条件下地面沉降的高精度动态预测。盾构法是城市隧道施工的一种关键方法。本文介绍了杭州复合地层盾构隧道下穿既有隧道引起的地面沉降的测量与预测。利用实测数据对盾构隧道开挖引起的纵向沉降曲线进行了分析,并将实测的横向沉降与Peck经验公式进行了比较。利用PSO,比较了长短期记忆神经网络(LSTM)、门控循环单元神经网络(GRU)和Bi-LSTM三种机器学习模型在预测监测点最大地面沉降方面的性能。利用Pearson相关系数分析了不同输入参数之间以及输入参数与输出参数之间的线性关系。在此基础上对模型进行了优化,并比较了优化前后模型的预测性能。结果表明,采用粒子群算法优化的Bi-LSTM模型在精度和稳定性上都取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Based Measurement and Prediction of Ground Settlement Induced by Shield Tunneling Undercrossing Existing Tunnels in Composite Strata.

To address the issue of insufficient accuracy in traditional settlement prediction methods for shield tunneling undercrossing in composite strata in Hangzhou, this paper proposes a particle swarm optimization (PSO)-based Bidirectional Long Short-Term Memory neural network (Bi-LSTM) prediction model for high-precision dynamic prediction of ground settlement under small-sample conditions. Shield tunneling is a key method for urban tunnel construction. This paper presents the measurement and prediction of ground settlement caused by shield tunneling undercrossing existing tunnels in composite strata in Hangzhou. The longitudinal ground settlement curve resulting from shield tunnel excavation was analyzed using measured data, and the measured lateral ground settlement was compared with the Peck empirical formula. Using PSO, the performance of three machine learning models in predicting the maximum ground settlement at monitoring points was compared: Long Short-Term Memory neural network (LSTM), Gated Recurrent Unit neural network (GRU), and Bi-LSTM. The linear relationships between different input parameters and between input parameters and the output parameter were analyzed using the Pearson correlation coefficient. Based on this analysis, the model was optimized, and its prediction performance before and after optimization was compared. The results show that the Bi-LSTM model optimized with the PSO algorithm demonstrates superior performance, achieving both accuracy and stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信