基于最小成本和最大流量的多无人机任务规划。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-05 DOI:10.3390/s25051605
Xiaodong Shi, Xiangping Zhai, Rui Wang, Yi Le, Shuang Fu, Ningzhong Liu
{"title":"基于最小成本和最大流量的多无人机任务规划。","authors":"Xiaodong Shi, Xiangping Zhai, Rui Wang, Yi Le, Shuang Fu, Ningzhong Liu","doi":"10.3390/s25051605","DOIUrl":null,"url":null,"abstract":"<p><p>With the rapid development of UAV technology, UAV delivery has gained attention for its potential to reduce labor costs. However, limitations in load capacity and energy restrict UAVs' distribution capabilities. This paper proposes a cooperative delivery scheme combining traditional trucks and UAVs to extend UAV coverage and improve delivery completion rates. For densely distributed depots in wide-area regions, we develop algorithms for task allocation and path planning in a truck-independent UAV system. Specifically, a minimum-cost, maximum-flow model is constructed to obtain sub-paths covering all delivery tasks, and resource tree-based algorithms are used to construct global paths for UAVs and trucks. Simulation results show that our algorithms reduce total energy consumption by 11.53% and 9.15% under different task points, which suggests that our proposed method can significantly enhance delivery efficiency, offering a promising solution for future logistics operations.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902523/pdf/","citationCount":"0","resultStr":"{\"title\":\"Task Planning of Multiple Unmanned Aerial Vehicles Based on Minimum Cost and Maximum Flow.\",\"authors\":\"Xiaodong Shi, Xiangping Zhai, Rui Wang, Yi Le, Shuang Fu, Ningzhong Liu\",\"doi\":\"10.3390/s25051605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>With the rapid development of UAV technology, UAV delivery has gained attention for its potential to reduce labor costs. However, limitations in load capacity and energy restrict UAVs' distribution capabilities. This paper proposes a cooperative delivery scheme combining traditional trucks and UAVs to extend UAV coverage and improve delivery completion rates. For densely distributed depots in wide-area regions, we develop algorithms for task allocation and path planning in a truck-independent UAV system. Specifically, a minimum-cost, maximum-flow model is constructed to obtain sub-paths covering all delivery tasks, and resource tree-based algorithms are used to construct global paths for UAVs and trucks. Simulation results show that our algorithms reduce total energy consumption by 11.53% and 9.15% under different task points, which suggests that our proposed method can significantly enhance delivery efficiency, offering a promising solution for future logistics operations.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902523/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25051605\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051605","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

随着无人机技术的快速发展,无人机配送因其降低人工成本的潜力而受到关注。然而,载荷能力和能量的限制限制了无人机的分配能力。为了扩大无人机的覆盖范围,提高配送完成率,提出了传统卡车与无人机的协同配送方案。针对广域密集分布的仓库,我们开发了一种与卡车无关的无人机系统的任务分配和路径规划算法。具体而言,构建了最小成本、最大流量模型来获取覆盖所有配送任务的子路径,并使用基于资源树的算法来构建无人机和卡车的全局路径。仿真结果表明,在不同的任务点下,算法的总能耗分别降低了11.53%和9.15%,这表明我们的方法可以显著提高配送效率,为未来的物流运营提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task Planning of Multiple Unmanned Aerial Vehicles Based on Minimum Cost and Maximum Flow.

With the rapid development of UAV technology, UAV delivery has gained attention for its potential to reduce labor costs. However, limitations in load capacity and energy restrict UAVs' distribution capabilities. This paper proposes a cooperative delivery scheme combining traditional trucks and UAVs to extend UAV coverage and improve delivery completion rates. For densely distributed depots in wide-area regions, we develop algorithms for task allocation and path planning in a truck-independent UAV system. Specifically, a minimum-cost, maximum-flow model is constructed to obtain sub-paths covering all delivery tasks, and resource tree-based algorithms are used to construct global paths for UAVs and trucks. Simulation results show that our algorithms reduce total energy consumption by 11.53% and 9.15% under different task points, which suggests that our proposed method can significantly enhance delivery efficiency, offering a promising solution for future logistics operations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信