四足机器人的层次强化学习:约束环境下的高效对象操作。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-04 DOI:10.3390/s25051565
David Azimi, Reza Hoseinnezhad
{"title":"四足机器人的层次强化学习:约束环境下的高效对象操作。","authors":"David Azimi, Reza Hoseinnezhad","doi":"10.3390/s25051565","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a hierarchical reinforcement learning (RL) framework tailored to object manipulation tasks by quadrupedal robots, emphasizing their real-world deployment. The proposed approach adopts a sensor-driven control structure capable of addressing challenges in dense and cluttered environments filled with walls and obstacles. A novel reward function is central to the method, incorporating sensor-based obstacle observations to optimize the decision-making. This design minimizes the computational demands while maintaining adaptability and robust functionality. Simulated trials conducted in NVIDIA Isaac Sim, utilizing ANYbotics quadrupedal robots, demonstrated a high manipulation accuracy, with a mean positioning error of 11 cm across object-target distances of up to 10 m. Furthermore, the RL framework effectively integrates path planning in complex environments, achieving energy-efficient and stable operations. These findings establish the framework as a promising approach for advanced robotics requiring versatility, efficiency, and practical deployability.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902496/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Reinforcement Learning for Quadrupedal Robots: Efficient Object Manipulation in Constrained Environments.\",\"authors\":\"David Azimi, Reza Hoseinnezhad\",\"doi\":\"10.3390/s25051565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study introduces a hierarchical reinforcement learning (RL) framework tailored to object manipulation tasks by quadrupedal robots, emphasizing their real-world deployment. The proposed approach adopts a sensor-driven control structure capable of addressing challenges in dense and cluttered environments filled with walls and obstacles. A novel reward function is central to the method, incorporating sensor-based obstacle observations to optimize the decision-making. This design minimizes the computational demands while maintaining adaptability and robust functionality. Simulated trials conducted in NVIDIA Isaac Sim, utilizing ANYbotics quadrupedal robots, demonstrated a high manipulation accuracy, with a mean positioning error of 11 cm across object-target distances of up to 10 m. Furthermore, the RL framework effectively integrates path planning in complex environments, achieving energy-efficient and stable operations. These findings establish the framework as a promising approach for advanced robotics requiring versatility, efficiency, and practical deployability.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902496/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25051565\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051565","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种针对四足机器人对象操作任务量身定制的分层强化学习(RL)框架,强调了它们在现实世界中的部署。所提出的方法采用传感器驱动的控制结构,能够解决充满墙壁和障碍物的密集和混乱环境中的挑战。一个新的奖励函数是该方法的核心,结合基于传感器的障碍物观察来优化决策。这种设计最大限度地减少了计算需求,同时保持了适应性和健壮的功能。在NVIDIA Isaac Sim中使用ANYbotics四足机器人进行的模拟试验显示,该机器人具有很高的操作精度,在物体-目标距离上的平均定位误差为11厘米,最长可达10米。此外,RL框架有效地集成了复杂环境下的路径规划,实现了节能和稳定的运行。这些发现为需要多功能性、高效率和实际可部署性的先进机器人技术建立了一个有前途的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Reinforcement Learning for Quadrupedal Robots: Efficient Object Manipulation in Constrained Environments.

This study introduces a hierarchical reinforcement learning (RL) framework tailored to object manipulation tasks by quadrupedal robots, emphasizing their real-world deployment. The proposed approach adopts a sensor-driven control structure capable of addressing challenges in dense and cluttered environments filled with walls and obstacles. A novel reward function is central to the method, incorporating sensor-based obstacle observations to optimize the decision-making. This design minimizes the computational demands while maintaining adaptability and robust functionality. Simulated trials conducted in NVIDIA Isaac Sim, utilizing ANYbotics quadrupedal robots, demonstrated a high manipulation accuracy, with a mean positioning error of 11 cm across object-target distances of up to 10 m. Furthermore, the RL framework effectively integrates path planning in complex environments, achieving energy-efficient and stable operations. These findings establish the framework as a promising approach for advanced robotics requiring versatility, efficiency, and practical deployability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信