István Lakatos, Gergő Bogacsovics, Attila Tiba, Dániel Priksz, Béla Juhász, Rita Erdélyi, Zsuzsa Berényi, Ildikó Bácskay, Dóra Ujvárosy, Balázs Harangi
{"title":"莫里斯水迷宫研究中增强和自动化行为分析的人工智能驱动框架。","authors":"István Lakatos, Gergő Bogacsovics, Attila Tiba, Dániel Priksz, Béla Juhász, Rita Erdélyi, Zsuzsa Berényi, Ildikó Bácskay, Dóra Ujvárosy, Balázs Harangi","doi":"10.3390/s25051564","DOIUrl":null,"url":null,"abstract":"<p><p>The Morris Water Maze (MWM) is a widely used behavioral test to assess the spatial learning and memory of animals, particularly valuable in studying neurodegenerative disorders such as Alzheimer's disease. Traditional methods for analyzing MWM experiments often face limitations in capturing the complexity of animal behaviors. In this study, we present a novel AI-based automated framework to process and evaluate MWM test videos, aiming to enhance behavioral analysis through machine learning. Our pipeline involves video preprocessing, animal detection using convolutional neural networks (CNNs), trajectory tracking, and postprocessing to derive detailed behavioral features. We propose concentric circle segmentation of the pool next to the quadrant-based division, and we extract 32 behavioral metrics for each zone, which are employed in classification tasks to differentiate between younger and older animals. Several machine learning classifiers, including random forest and neural networks, are evaluated, with feature selection techniques applied to improve the classification accuracy. Our results demonstrate a significant improvement in classification performance, particularly through the integration of feature sets derived from concentric zone analyses. This automated approach offers a robust solution for MWM data processing, providing enhanced precision and reliability, which is critical for the study of neurodegenerative disorders.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902479/pdf/","citationCount":"0","resultStr":"{\"title\":\"AI-Driven Framework for Enhanced and Automated Behavioral Analysis in Morris Water Maze Studies.\",\"authors\":\"István Lakatos, Gergő Bogacsovics, Attila Tiba, Dániel Priksz, Béla Juhász, Rita Erdélyi, Zsuzsa Berényi, Ildikó Bácskay, Dóra Ujvárosy, Balázs Harangi\",\"doi\":\"10.3390/s25051564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Morris Water Maze (MWM) is a widely used behavioral test to assess the spatial learning and memory of animals, particularly valuable in studying neurodegenerative disorders such as Alzheimer's disease. Traditional methods for analyzing MWM experiments often face limitations in capturing the complexity of animal behaviors. In this study, we present a novel AI-based automated framework to process and evaluate MWM test videos, aiming to enhance behavioral analysis through machine learning. Our pipeline involves video preprocessing, animal detection using convolutional neural networks (CNNs), trajectory tracking, and postprocessing to derive detailed behavioral features. We propose concentric circle segmentation of the pool next to the quadrant-based division, and we extract 32 behavioral metrics for each zone, which are employed in classification tasks to differentiate between younger and older animals. Several machine learning classifiers, including random forest and neural networks, are evaluated, with feature selection techniques applied to improve the classification accuracy. Our results demonstrate a significant improvement in classification performance, particularly through the integration of feature sets derived from concentric zone analyses. This automated approach offers a robust solution for MWM data processing, providing enhanced precision and reliability, which is critical for the study of neurodegenerative disorders.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902479/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25051564\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051564","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
摘要
莫里斯水迷宫(Morris Water Maze, MWM)是一种被广泛用于评估动物空间学习和记忆的行为测试,在研究阿尔茨海默病等神经退行性疾病方面特别有价值。分析MWM实验的传统方法在捕捉动物行为的复杂性方面往往面临局限性。在这项研究中,我们提出了一个新的基于人工智能的自动化框架来处理和评估MWM测试视频,旨在通过机器学习增强行为分析。我们的管道包括视频预处理、使用卷积神经网络(cnn)的动物检测、轨迹跟踪和后处理,以获得详细的行为特征。我们提出在基于象限的划分旁边对池进行同心圆分割,并为每个区域提取32个行为指标,用于分类任务来区分年轻和年老的动物。评估了几种机器学习分类器,包括随机森林和神经网络,并应用了特征选择技术来提高分类精度。我们的结果证明了分类性能的显著提高,特别是通过集成来自同心区分析的特征集。这种自动化方法为MWM数据处理提供了一个强大的解决方案,提供了更高的精度和可靠性,这对神经退行性疾病的研究至关重要。
AI-Driven Framework for Enhanced and Automated Behavioral Analysis in Morris Water Maze Studies.
The Morris Water Maze (MWM) is a widely used behavioral test to assess the spatial learning and memory of animals, particularly valuable in studying neurodegenerative disorders such as Alzheimer's disease. Traditional methods for analyzing MWM experiments often face limitations in capturing the complexity of animal behaviors. In this study, we present a novel AI-based automated framework to process and evaluate MWM test videos, aiming to enhance behavioral analysis through machine learning. Our pipeline involves video preprocessing, animal detection using convolutional neural networks (CNNs), trajectory tracking, and postprocessing to derive detailed behavioral features. We propose concentric circle segmentation of the pool next to the quadrant-based division, and we extract 32 behavioral metrics for each zone, which are employed in classification tasks to differentiate between younger and older animals. Several machine learning classifiers, including random forest and neural networks, are evaluated, with feature selection techniques applied to improve the classification accuracy. Our results demonstrate a significant improvement in classification performance, particularly through the integration of feature sets derived from concentric zone analyses. This automated approach offers a robust solution for MWM data processing, providing enhanced precision and reliability, which is critical for the study of neurodegenerative disorders.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.