AD-VAE:对抗解纠缠变分自编码器。

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-03-04 DOI:10.3390/s25051574
Adson Silva, Ricardo Farias
{"title":"AD-VAE:对抗解纠缠变分自编码器。","authors":"Adson Silva, Ricardo Farias","doi":"10.3390/s25051574","DOIUrl":null,"url":null,"abstract":"<p><p>Face recognition (FR) is a less intrusive biometrics technology with various applications, such as security, surveillance, and access control systems. FR remains challenging, especially when there is only a single image per person as a gallery dataset and when dealing with variations like pose, illumination, and occlusion. Deep learning techniques have shown promising results in recent years using VAE and GAN, with approaches such as patch-VAE, VAE-GAN for 3D Indoor Scene Synthesis, and hybrid VAE-GAN models. However, in Single Sample Per Person Face Recognition (SSPP FR), the challenge of learning robust and discriminative features that preserve the subject's identity persists. To address these issues, we propose a novel framework called AD-VAE, specifically for SSPP FR, using a combination of variational autoencoder (VAE) and Generative Adversarial Network (GAN) techniques. The proposed AD-VAE framework is designed to learn how to build representative identity-preserving prototypes from both controlled and wild datasets, effectively handling variations like pose, illumination, and occlusion. The method uses four networks: an encoder and decoder similar to VAE, a generator that receives the encoder output plus noise to generate an identity-preserving prototype, and a discriminator that operates as a multi-task network. AD-VAE outperforms all tested state-of-the-art face recognition techniques, demonstrating its robustness. The proposed framework achieves superior results on four controlled benchmark datasets-AR, E-YaleB, CAS-PEAL, and FERET-with recognition rates of 84.9%, 94.6%, 94.5%, and 96.0%, respectively, and achieves remarkable performance on the uncontrolled LFW dataset, with a recognition rate of 99.6%. The AD-VAE framework shows promising potential for future research and real-world applications.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902370/pdf/","citationCount":"0","resultStr":"{\"title\":\"AD-VAE: Adversarial Disentangling Variational Autoencoder.\",\"authors\":\"Adson Silva, Ricardo Farias\",\"doi\":\"10.3390/s25051574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Face recognition (FR) is a less intrusive biometrics technology with various applications, such as security, surveillance, and access control systems. FR remains challenging, especially when there is only a single image per person as a gallery dataset and when dealing with variations like pose, illumination, and occlusion. Deep learning techniques have shown promising results in recent years using VAE and GAN, with approaches such as patch-VAE, VAE-GAN for 3D Indoor Scene Synthesis, and hybrid VAE-GAN models. However, in Single Sample Per Person Face Recognition (SSPP FR), the challenge of learning robust and discriminative features that preserve the subject's identity persists. To address these issues, we propose a novel framework called AD-VAE, specifically for SSPP FR, using a combination of variational autoencoder (VAE) and Generative Adversarial Network (GAN) techniques. The proposed AD-VAE framework is designed to learn how to build representative identity-preserving prototypes from both controlled and wild datasets, effectively handling variations like pose, illumination, and occlusion. The method uses four networks: an encoder and decoder similar to VAE, a generator that receives the encoder output plus noise to generate an identity-preserving prototype, and a discriminator that operates as a multi-task network. AD-VAE outperforms all tested state-of-the-art face recognition techniques, demonstrating its robustness. The proposed framework achieves superior results on four controlled benchmark datasets-AR, E-YaleB, CAS-PEAL, and FERET-with recognition rates of 84.9%, 94.6%, 94.5%, and 96.0%, respectively, and achieves remarkable performance on the uncontrolled LFW dataset, with a recognition rate of 99.6%. The AD-VAE framework shows promising potential for future research and real-world applications.</p>\",\"PeriodicalId\":21698,\"journal\":{\"name\":\"Sensors\",\"volume\":\"25 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11902370/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.3390/s25051574\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25051574","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

人脸识别(FR)是一种侵入性较小的生物识别技术,具有各种应用,如安全,监视和访问控制系统。FR仍然具有挑战性,特别是当每个人只有一张图像作为画廊数据集以及处理姿势,照明和遮挡等变化时。近年来,深度学习技术在使用VAE和GAN方面取得了可喜的成果,例如用于3D室内场景合成的patch-VAE、VAE-GAN和混合VAE-GAN模型。然而,在单样本每人面部识别(SSPP FR)中,学习保持受试者身份的鲁棒性和判别性特征的挑战仍然存在。为了解决这些问题,我们提出了一个名为AD-VAE的新框架,专门针对SSPP FR,使用变分自编码器(VAE)和生成对抗网络(GAN)技术的组合。提出的AD-VAE框架旨在学习如何从受控和野生数据集建立具有代表性的身份保留原型,有效地处理姿势,照明和遮挡等变化。该方法使用四个网络:一个类似于VAE的编码器和解码器,一个接收编码器输出和噪声以生成保持身份原型的生成器,以及一个作为多任务网络运行的鉴别器。AD-VAE优于所有经过测试的最先进的人脸识别技术,证明了它的鲁棒性。该框架在ar、E-YaleB、CAS-PEAL和feret 4个受控基准数据集上取得了优异的识别率,分别达到84.9%、94.6%、94.5%和96.0%,在LFW非受控数据集上取得了优异的性能,识别率达到99.6%。AD-VAE框架在未来的研究和实际应用中显示出巨大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AD-VAE: Adversarial Disentangling Variational Autoencoder.

Face recognition (FR) is a less intrusive biometrics technology with various applications, such as security, surveillance, and access control systems. FR remains challenging, especially when there is only a single image per person as a gallery dataset and when dealing with variations like pose, illumination, and occlusion. Deep learning techniques have shown promising results in recent years using VAE and GAN, with approaches such as patch-VAE, VAE-GAN for 3D Indoor Scene Synthesis, and hybrid VAE-GAN models. However, in Single Sample Per Person Face Recognition (SSPP FR), the challenge of learning robust and discriminative features that preserve the subject's identity persists. To address these issues, we propose a novel framework called AD-VAE, specifically for SSPP FR, using a combination of variational autoencoder (VAE) and Generative Adversarial Network (GAN) techniques. The proposed AD-VAE framework is designed to learn how to build representative identity-preserving prototypes from both controlled and wild datasets, effectively handling variations like pose, illumination, and occlusion. The method uses four networks: an encoder and decoder similar to VAE, a generator that receives the encoder output plus noise to generate an identity-preserving prototype, and a discriminator that operates as a multi-task network. AD-VAE outperforms all tested state-of-the-art face recognition techniques, demonstrating its robustness. The proposed framework achieves superior results on four controlled benchmark datasets-AR, E-YaleB, CAS-PEAL, and FERET-with recognition rates of 84.9%, 94.6%, 94.5%, and 96.0%, respectively, and achieves remarkable performance on the uncontrolled LFW dataset, with a recognition rate of 99.6%. The AD-VAE framework shows promising potential for future research and real-world applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信