TS-SSA:针对大规模多目标优化问题的改进型两阶段麻雀搜索算法。

IF 2.6 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
PLoS ONE Pub Date : 2025-03-17 eCollection Date: 2025-01-01 DOI:10.1371/journal.pone.0314584
Xiaozhi Du, Kai Chen, Hongyuan Du, Zongbin Qiao
{"title":"TS-SSA:针对大规模多目标优化问题的改进型两阶段麻雀搜索算法。","authors":"Xiaozhi Du, Kai Chen, Hongyuan Du, Zongbin Qiao","doi":"10.1371/journal.pone.0314584","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale many-objective optimization problems (LSMaOPs) are a current research hotspot. However, since LSMaOPs involves a large number of variables and objectives, state-of-the-art methods face a huge search space, which is difficult to be explored comprehensively. This paper proposes an improved sparrow search algorithm (SSA) that manages convergence and diversity separately for solving LSMaOPs, called two-stage sparrow search algorithm (TS-SSA). In the first stage of TS-SSA, this paper proposes a many-objective sparrow search algorithm (MaOSSA) to mainly manages the convergence through the adaptive population dividing strategy and the random bootstrap search strategy. In the second stage of TS-SSA, this paper proposes a dynamic multi-population search strategy to mainly manage the diversity of the population through the dynamic population dividing strategy and the multi-population search strategy. TS-SSA has been experimentally compared with 10 state-of-the-art MOEAs on DTLZ and LSMOP benchmark test problems with 3-20 objectives and 300-2000 decision variables. The results show that TS-SSA has significant performance and efficiency advantages in solving LSMaOPs. In addition, we apply TS-SSA to a real case (automatic test scenarios generation), and the result shows that TS-SSA outperforms other algorithms on diversity.</p>","PeriodicalId":20189,"journal":{"name":"PLoS ONE","volume":"20 3","pages":"e0314584"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913308/pdf/","citationCount":"0","resultStr":"{\"title\":\"TS-SSA: An improved two-stage sparrow search algorithm for large-scale many-objective optimization problems.\",\"authors\":\"Xiaozhi Du, Kai Chen, Hongyuan Du, Zongbin Qiao\",\"doi\":\"10.1371/journal.pone.0314584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large-scale many-objective optimization problems (LSMaOPs) are a current research hotspot. However, since LSMaOPs involves a large number of variables and objectives, state-of-the-art methods face a huge search space, which is difficult to be explored comprehensively. This paper proposes an improved sparrow search algorithm (SSA) that manages convergence and diversity separately for solving LSMaOPs, called two-stage sparrow search algorithm (TS-SSA). In the first stage of TS-SSA, this paper proposes a many-objective sparrow search algorithm (MaOSSA) to mainly manages the convergence through the adaptive population dividing strategy and the random bootstrap search strategy. In the second stage of TS-SSA, this paper proposes a dynamic multi-population search strategy to mainly manage the diversity of the population through the dynamic population dividing strategy and the multi-population search strategy. TS-SSA has been experimentally compared with 10 state-of-the-art MOEAs on DTLZ and LSMOP benchmark test problems with 3-20 objectives and 300-2000 decision variables. The results show that TS-SSA has significant performance and efficiency advantages in solving LSMaOPs. In addition, we apply TS-SSA to a real case (automatic test scenarios generation), and the result shows that TS-SSA outperforms other algorithms on diversity.</p>\",\"PeriodicalId\":20189,\"journal\":{\"name\":\"PLoS ONE\",\"volume\":\"20 3\",\"pages\":\"e0314584\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11913308/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS ONE\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pone.0314584\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS ONE","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1371/journal.pone.0314584","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

大规模多目标优化问题(LSMaOPs)是当前的研究热点。然而,由于 LSMaOPs 涉及大量变量和目标,最先进的方法面临着巨大的搜索空间,难以全面探索。本文提出了一种改进的麻雀搜索算法(SSA),将收敛性和多样性分开管理,用于求解 LSMaOPs,称为两阶段麻雀搜索算法(TS-SSA)。在 TS-SSA 的第一阶段,本文提出了一种多目标麻雀搜索算法(MaOSSA),主要通过自适应种群划分策略和随机引导搜索策略来管理收敛性。在 TS-SSA 的第二阶段,本文提出了动态多目标种群搜索策略,主要通过动态种群划分策略和多目标种群搜索策略来管理种群的多样性。在DTLZ和LSMOP基准测试问题(3-20个目标和300-2000个决策变量)上,TS-SSA与10种最先进的MOEA进行了实验比较。结果表明,TS-SSA 在求解 LSMaOP 时具有显著的性能和效率优势。此外,我们还将 TS-SSA 应用于实际案例(自动生成测试场景),结果表明 TS-SSA 在多样性方面优于其他算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
TS-SSA: An improved two-stage sparrow search algorithm for large-scale many-objective optimization problems.

Large-scale many-objective optimization problems (LSMaOPs) are a current research hotspot. However, since LSMaOPs involves a large number of variables and objectives, state-of-the-art methods face a huge search space, which is difficult to be explored comprehensively. This paper proposes an improved sparrow search algorithm (SSA) that manages convergence and diversity separately for solving LSMaOPs, called two-stage sparrow search algorithm (TS-SSA). In the first stage of TS-SSA, this paper proposes a many-objective sparrow search algorithm (MaOSSA) to mainly manages the convergence through the adaptive population dividing strategy and the random bootstrap search strategy. In the second stage of TS-SSA, this paper proposes a dynamic multi-population search strategy to mainly manage the diversity of the population through the dynamic population dividing strategy and the multi-population search strategy. TS-SSA has been experimentally compared with 10 state-of-the-art MOEAs on DTLZ and LSMOP benchmark test problems with 3-20 objectives and 300-2000 decision variables. The results show that TS-SSA has significant performance and efficiency advantages in solving LSMaOPs. In addition, we apply TS-SSA to a real case (automatic test scenarios generation), and the result shows that TS-SSA outperforms other algorithms on diversity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS ONE
PLoS ONE 生物-生物学
CiteScore
6.20
自引率
5.40%
发文量
14242
审稿时长
3.7 months
期刊介绍: PLOS ONE is an international, peer-reviewed, open-access, online publication. PLOS ONE welcomes reports on primary research from any scientific discipline. It provides: * Open-access—freely accessible online, authors retain copyright * Fast publication times * Peer review by expert, practicing researchers * Post-publication tools to indicate quality and impact * Community-based dialogue on articles * Worldwide media coverage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信