Albert Jang, Kwok-Shing Chan, Azma Mareyam, Jason Stockmann, Susie Yi Huang, Nian Wang, Hyungseok Jang, Hong-Hsi Lee, Fang Liu
{"title":"同时三维定量磁化转移成像和磁化率图。","authors":"Albert Jang, Kwok-Shing Chan, Azma Mareyam, Jason Stockmann, Susie Yi Huang, Nian Wang, Hyungseok Jang, Hong-Hsi Lee, Fang Liu","doi":"10.1002/mrm.30493","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Introduce a unified acquisition and modeling strategy to simultaneously quantify magnetization transfer (MT), tissue susceptibility ( <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\chi $$</annotation></semantics> </math> ) and <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {T}_2^{\\ast } $$</annotation></semantics> </math> .</p><p><strong>Theory and methods: </strong>Magnetization transfer is induced through the application of off-resonance irradiation between excitation and acquisition of an RF-spoiled gradient-echo scheme, where free pool spin-lattice relaxation ( <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>1</mn> <mi>F</mi></msubsup> </mrow> <annotation>$$ {T}_1^{\\mathrm{F}} $$</annotation></semantics> </math> ), macromolecular proton fraction ( <math> <semantics><mrow><mi>f</mi></mrow> <annotation>$$ f $$</annotation></semantics> </math> ) and magnetization exchange rate ( <math> <semantics> <mrow><msub><mi>k</mi> <mi>F</mi></msub> </mrow> <annotation>$$ {k}_{\\mathrm{F}} $$</annotation></semantics> </math> ) were calculated by modeling the magnitude of the MR signal using a binary spin-bath MT model with <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {B}_1^{+} $$</annotation></semantics> </math> inhomogeneity correction via Bloch-Siegert shift. Simultaneously, a multi-echo acquisition is incorporated into this framework to measure the time evolution of both signal magnitude and phase, which was further modeled for estimating <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {T}_2^{\\ast } $$</annotation></semantics> </math> and tissue susceptibility. In this work, we demonstrate the feasibility of this new acquisition and modeling strategy in vivo on the brain tissue.</p><p><strong>Results: </strong>In vivo brain experiments were conducted on five healthy subjects to validate our method. Utilizing an analytically derived signal model, we simultaneously obtained 3D <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>1</mn> <mi>F</mi></msubsup> </mrow> <annotation>$$ {T}_1^{\\mathrm{F}} $$</annotation></semantics> </math> , <math> <semantics><mrow><mi>f</mi></mrow> <annotation>$$ f $$</annotation></semantics> </math> , <math> <semantics> <mrow><msub><mi>k</mi> <mi>F</mi></msub> </mrow> <annotation>$$ {k}_{\\mathrm{F}} $$</annotation></semantics> </math> , <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\chi $$</annotation></semantics> </math> and <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {T}_2^{\\ast } $$</annotation></semantics> </math> maps of the whole brain. Our results from the brain regional analysis show good agreement with those previously reported in the literature, which used separate MT and QSM methods.</p><p><strong>Conclusion: </strong>A unified acquisition and modeling strategy based on an analytical signal model that fully leverages both the magnitude and phase of the acquired signals was demonstrated and validated for simultaneous MT, susceptibility and <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {T}_2^{\\ast } $$</annotation></semantics> </math> quantification that are free from <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {B}_1^{+} $$</annotation></semantics> </math> bias.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous 3D quantitative magnetization transfer imaging and susceptibility mapping.\",\"authors\":\"Albert Jang, Kwok-Shing Chan, Azma Mareyam, Jason Stockmann, Susie Yi Huang, Nian Wang, Hyungseok Jang, Hong-Hsi Lee, Fang Liu\",\"doi\":\"10.1002/mrm.30493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Introduce a unified acquisition and modeling strategy to simultaneously quantify magnetization transfer (MT), tissue susceptibility ( <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\\\chi $$</annotation></semantics> </math> ) and <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {T}_2^{\\\\ast } $$</annotation></semantics> </math> .</p><p><strong>Theory and methods: </strong>Magnetization transfer is induced through the application of off-resonance irradiation between excitation and acquisition of an RF-spoiled gradient-echo scheme, where free pool spin-lattice relaxation ( <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>1</mn> <mi>F</mi></msubsup> </mrow> <annotation>$$ {T}_1^{\\\\mathrm{F}} $$</annotation></semantics> </math> ), macromolecular proton fraction ( <math> <semantics><mrow><mi>f</mi></mrow> <annotation>$$ f $$</annotation></semantics> </math> ) and magnetization exchange rate ( <math> <semantics> <mrow><msub><mi>k</mi> <mi>F</mi></msub> </mrow> <annotation>$$ {k}_{\\\\mathrm{F}} $$</annotation></semantics> </math> ) were calculated by modeling the magnitude of the MR signal using a binary spin-bath MT model with <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {B}_1^{+} $$</annotation></semantics> </math> inhomogeneity correction via Bloch-Siegert shift. Simultaneously, a multi-echo acquisition is incorporated into this framework to measure the time evolution of both signal magnitude and phase, which was further modeled for estimating <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {T}_2^{\\\\ast } $$</annotation></semantics> </math> and tissue susceptibility. In this work, we demonstrate the feasibility of this new acquisition and modeling strategy in vivo on the brain tissue.</p><p><strong>Results: </strong>In vivo brain experiments were conducted on five healthy subjects to validate our method. Utilizing an analytically derived signal model, we simultaneously obtained 3D <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>1</mn> <mi>F</mi></msubsup> </mrow> <annotation>$$ {T}_1^{\\\\mathrm{F}} $$</annotation></semantics> </math> , <math> <semantics><mrow><mi>f</mi></mrow> <annotation>$$ f $$</annotation></semantics> </math> , <math> <semantics> <mrow><msub><mi>k</mi> <mi>F</mi></msub> </mrow> <annotation>$$ {k}_{\\\\mathrm{F}} $$</annotation></semantics> </math> , <math> <semantics><mrow><mi>χ</mi></mrow> <annotation>$$ \\\\chi $$</annotation></semantics> </math> and <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {T}_2^{\\\\ast } $$</annotation></semantics> </math> maps of the whole brain. Our results from the brain regional analysis show good agreement with those previously reported in the literature, which used separate MT and QSM methods.</p><p><strong>Conclusion: </strong>A unified acquisition and modeling strategy based on an analytical signal model that fully leverages both the magnitude and phase of the acquired signals was demonstrated and validated for simultaneous MT, susceptibility and <math> <semantics> <mrow><msubsup><mi>T</mi> <mn>2</mn> <mo>*</mo></msubsup> </mrow> <annotation>$$ {T}_2^{\\\\ast } $$</annotation></semantics> </math> quantification that are free from <math> <semantics> <mrow><msubsup><mi>B</mi> <mn>1</mn> <mo>+</mo></msubsup> </mrow> <annotation>$$ {B}_1^{+} $$</annotation></semantics> </math> bias.</p>\",\"PeriodicalId\":18065,\"journal\":{\"name\":\"Magnetic Resonance in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Magnetic Resonance in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mrm.30493\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.30493","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
摘要
目的:引入统一采集和建模策略,同时量化磁化转移(MT)、组织磁化率(χ $$ \chi $$)和t2 * $$ {T}_2^{\ast } $$。理论和方法:通过在激发和获取rf破坏梯度回波方案之间应用非共振辐照诱导磁化转移,其中自由池自旋-晶格弛豫(t1 F $$ {T}_1^{\mathrm{F}} $$),利用二元自旋浴MT模型,通过Bloch-Siegert位移校正b1 + $$ {B}_1^{+} $$不均匀性,对磁共振信号的大小进行建模,计算了大分子质子分数(f $$ f $$)和磁化交换率(k f $$ {k}_{\mathrm{F}} $$)。同时,将多回波采集纳入该框架,以测量信号幅度和相位的时间演变,并进一步建模以估计t2 * $$ {T}_2^{\ast } $$和组织易感性。在这项工作中,我们证明了这种新的获取和建模策略在脑组织体内的可行性。结果:对5名健康受试者进行了体内脑实验,验证了我们的方法。利用解析导出的信号模型,我们同时获得了全脑的3D t1 F $$ {T}_1^{\mathrm{F}} $$、F $$ f $$、k F $$ {k}_{\mathrm{F}} $$、χ $$ \chi $$和t2 * $$ {T}_2^{\ast } $$图。我们的脑区域分析结果与先前文献报道的结果一致,这些文献使用了单独的MT和QSM方法。结论:基于分析信号模型的统一采集和建模策略,充分利用了采集信号的幅度和相位,并验证了同时进行MT,磁化率和t2 * $$ {T}_2^{\ast } $$量化的策略,而不受b1 + $$ {B}_1^{+} $$偏差的影响。
Simultaneous 3D quantitative magnetization transfer imaging and susceptibility mapping.
Purpose: Introduce a unified acquisition and modeling strategy to simultaneously quantify magnetization transfer (MT), tissue susceptibility ( ) and .
Theory and methods: Magnetization transfer is induced through the application of off-resonance irradiation between excitation and acquisition of an RF-spoiled gradient-echo scheme, where free pool spin-lattice relaxation ( ), macromolecular proton fraction ( ) and magnetization exchange rate ( ) were calculated by modeling the magnitude of the MR signal using a binary spin-bath MT model with inhomogeneity correction via Bloch-Siegert shift. Simultaneously, a multi-echo acquisition is incorporated into this framework to measure the time evolution of both signal magnitude and phase, which was further modeled for estimating and tissue susceptibility. In this work, we demonstrate the feasibility of this new acquisition and modeling strategy in vivo on the brain tissue.
Results: In vivo brain experiments were conducted on five healthy subjects to validate our method. Utilizing an analytically derived signal model, we simultaneously obtained 3D , , , and maps of the whole brain. Our results from the brain regional analysis show good agreement with those previously reported in the literature, which used separate MT and QSM methods.
Conclusion: A unified acquisition and modeling strategy based on an analytical signal model that fully leverages both the magnitude and phase of the acquired signals was demonstrated and validated for simultaneous MT, susceptibility and quantification that are free from bias.
期刊介绍:
Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.