钙化反应:间充质干细胞的持续挑战和治疗机会。

IF 5.3 2区 生物学 Q2 CELL BIOLOGY
Daoxu Wu, Shijiu Lu, Jiaying Hu, Ming Zeng, Jingjing Wu, Cui Li, Xingfang Tang, Tian Lu, Yi Zhu, Jiayin Liu, Lianju Qin, Ningning Wang
{"title":"钙化反应:间充质干细胞的持续挑战和治疗机会。","authors":"Daoxu Wu, Shijiu Lu, Jiaying Hu, Ming Zeng, Jingjing Wu, Cui Li, Xingfang Tang, Tian Lu, Yi Zhu, Jiayin Liu, Lianju Qin, Ningning Wang","doi":"10.1093/jmcb/mjaf009","DOIUrl":null,"url":null,"abstract":"<p><p>Calciphylaxis is a rare, progressive disorder characterized by subcutaneous adipose and dermal microvascular calcifications, microthrombi, and endothelial damage. It mainly affects patients with chronic kidney disease (CKD), which is also known as calcific uremic arteriolopathy. Skin biopsy is the gold standard for diagnosis, but it is an invasive procedure. Calciphylaxis frequently results in ischemic and nonhealing ulcerations with a high mortality rate. A multidisciplinary targeted approach is the primary treatment method. Vascular calcification, which is a common complication in patients with CKD, cannot completely explain the rapid progression of calciphylaxis. This article reviews the advances in the epidemiological characteristics, risk factors, and diagnosis, including non-uraemic calciphylaxis (NUC) and visceral calciphylaxis, pathogenesis, associated animal models, and treatment of calciphylaxis. The scarcity of animal models that mimic the clinical presentation of calciphylaxis hampers the understanding of its pathogenesis. The acute effects on progressive vascular injury, including the induction of severe ischemia and inflammatory responses, have been emphasized. Actively listening to the voices of patients and their families and building a multidimensional research system with artificial intelligence technologies based on the specific molecular makeup of calciphylaxis patients will help tailor regenerative treatment strategies. Mesenchymal stem cells (MSCs) may be proposed as a novel therapy for calciphylaxis because of their regenerative effects, inhibition of vascular calcification, anti-infection and immunomodulation properties, and improvement of hypercoagulability. Safe, effective, accessible, and economical MSC strategies guided by biomarkers deserve consideration for the treatment of this devastating disease.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calciphylaxis: Ongoing Challenges and Treatment Opportunities with Mesenchymal Stem Cells.\",\"authors\":\"Daoxu Wu, Shijiu Lu, Jiaying Hu, Ming Zeng, Jingjing Wu, Cui Li, Xingfang Tang, Tian Lu, Yi Zhu, Jiayin Liu, Lianju Qin, Ningning Wang\",\"doi\":\"10.1093/jmcb/mjaf009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Calciphylaxis is a rare, progressive disorder characterized by subcutaneous adipose and dermal microvascular calcifications, microthrombi, and endothelial damage. It mainly affects patients with chronic kidney disease (CKD), which is also known as calcific uremic arteriolopathy. Skin biopsy is the gold standard for diagnosis, but it is an invasive procedure. Calciphylaxis frequently results in ischemic and nonhealing ulcerations with a high mortality rate. A multidisciplinary targeted approach is the primary treatment method. Vascular calcification, which is a common complication in patients with CKD, cannot completely explain the rapid progression of calciphylaxis. This article reviews the advances in the epidemiological characteristics, risk factors, and diagnosis, including non-uraemic calciphylaxis (NUC) and visceral calciphylaxis, pathogenesis, associated animal models, and treatment of calciphylaxis. The scarcity of animal models that mimic the clinical presentation of calciphylaxis hampers the understanding of its pathogenesis. The acute effects on progressive vascular injury, including the induction of severe ischemia and inflammatory responses, have been emphasized. Actively listening to the voices of patients and their families and building a multidimensional research system with artificial intelligence technologies based on the specific molecular makeup of calciphylaxis patients will help tailor regenerative treatment strategies. Mesenchymal stem cells (MSCs) may be proposed as a novel therapy for calciphylaxis because of their regenerative effects, inhibition of vascular calcification, anti-infection and immunomodulation properties, and improvement of hypercoagulability. Safe, effective, accessible, and economical MSC strategies guided by biomarkers deserve consideration for the treatment of this devastating disease.</p>\",\"PeriodicalId\":16433,\"journal\":{\"name\":\"Journal of Molecular Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/jmcb/mjaf009\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjaf009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

钙化反应是一种罕见的进行性疾病,以皮下脂肪和真皮微血管钙化、微血栓和内皮损伤为特征。它主要影响慢性肾脏疾病(CKD)患者,也被称为钙化尿毒症小动脉病。皮肤活检是诊断的金标准,但它是一种侵入性手术。钙化反应经常导致缺血性和不愈合溃疡,死亡率高。多学科靶向治疗是主要的治疗方法。血管钙化是CKD患者的常见并发症,但不能完全解释钙化反应的快速进展。本文综述了非尿毒性钙化反应(NUC)和内脏性钙化反应的流行病学特征、危险因素和诊断、发病机制、相关动物模型和治疗方面的进展。缺乏模拟钙化反应临床表现的动物模型阻碍了对其发病机制的理解。对进行性血管损伤的急性影响,包括诱导严重缺血和炎症反应,已被强调。积极倾听患者及其家属的声音,利用人工智能技术建立基于钙化患者特定分子组成的多维研究体系,将有助于制定再生治疗策略。间充质干细胞(MSCs)由于其再生作用、抑制血管钙化、抗感染和免疫调节特性以及改善高凝性,可能被提出作为一种新的钙化治疗方法。在生物标志物的指导下,安全、有效、可获得和经济的MSC策略值得考虑用于治疗这种毁灭性疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calciphylaxis: Ongoing Challenges and Treatment Opportunities with Mesenchymal Stem Cells.

Calciphylaxis is a rare, progressive disorder characterized by subcutaneous adipose and dermal microvascular calcifications, microthrombi, and endothelial damage. It mainly affects patients with chronic kidney disease (CKD), which is also known as calcific uremic arteriolopathy. Skin biopsy is the gold standard for diagnosis, but it is an invasive procedure. Calciphylaxis frequently results in ischemic and nonhealing ulcerations with a high mortality rate. A multidisciplinary targeted approach is the primary treatment method. Vascular calcification, which is a common complication in patients with CKD, cannot completely explain the rapid progression of calciphylaxis. This article reviews the advances in the epidemiological characteristics, risk factors, and diagnosis, including non-uraemic calciphylaxis (NUC) and visceral calciphylaxis, pathogenesis, associated animal models, and treatment of calciphylaxis. The scarcity of animal models that mimic the clinical presentation of calciphylaxis hampers the understanding of its pathogenesis. The acute effects on progressive vascular injury, including the induction of severe ischemia and inflammatory responses, have been emphasized. Actively listening to the voices of patients and their families and building a multidimensional research system with artificial intelligence technologies based on the specific molecular makeup of calciphylaxis patients will help tailor regenerative treatment strategies. Mesenchymal stem cells (MSCs) may be proposed as a novel therapy for calciphylaxis because of their regenerative effects, inhibition of vascular calcification, anti-infection and immunomodulation properties, and improvement of hypercoagulability. Safe, effective, accessible, and economical MSC strategies guided by biomarkers deserve consideration for the treatment of this devastating disease.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信