一种在黄热病蚊子,埃及伊蚊中参与棘糖降解的丝氨酸蛋白酶的鉴定。

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hongxiao Yu, Caixia Peng, Zhaohui Chen, Jie Li, Yunqi Li, Xiaojing Zhu, Yuqi Huang, Linlong Jiang, Pablo Sobrado, Jianqiang Lan, Yingying Guo, Qian Han
{"title":"一种在黄热病蚊子,埃及伊蚊中参与棘糖降解的丝氨酸蛋白酶的鉴定。","authors":"Hongxiao Yu, Caixia Peng, Zhaohui Chen, Jie Li, Yunqi Li, Xiaojing Zhu, Yuqi Huang, Linlong Jiang, Pablo Sobrado, Jianqiang Lan, Yingying Guo, Qian Han","doi":"10.1111/imb.12990","DOIUrl":null,"url":null,"abstract":"<p><p>Spinosad is a widely used insecticide effective in controlling Aedes aegypti populations, but the molecular mechanisms underlying resistance remain poorly understood. This study explores the role of a serine protease, AeaSP (AAEL002624), in the potential detoxification ability of spinosad. Our results showed the crude protein of Ae. aegypti degraded approximately 48% of spinosad in vitro within 1 h; based on our previous research, AeaSP was believed to be potentially involved in the degradation of spinosad. Subsequently, AeaSP was recombinantly expressed in vitro, and its enzymatic activity was tested using BAEE as a substrate, with a Michaelis constant (KM) of 0.88 mmol/L. Spatiotemporal expression profiles revealed that AeaSP expression peaked in third instar larvae and thoraxes. In vitro assays showed that AeaSP degraded approximately 63% of spinosad (500 ng/mL) within 6 h. RNAi knockdown of AeaSP significantly increased larval mortality under spinosad exposure and raised spinosad residue levels in larvae by 37% under 0.15 μg/mL spinosad. Our findings suggest AeaSP may play a critical role in detoxifying spinosad in Ae. aegypti and serve as a target for improving spinosad efficacy and mosquito control strategies.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of a serine protease involved in spinosad degradation in the yellow fever mosquito, Aedes aegypti.\",\"authors\":\"Hongxiao Yu, Caixia Peng, Zhaohui Chen, Jie Li, Yunqi Li, Xiaojing Zhu, Yuqi Huang, Linlong Jiang, Pablo Sobrado, Jianqiang Lan, Yingying Guo, Qian Han\",\"doi\":\"10.1111/imb.12990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Spinosad is a widely used insecticide effective in controlling Aedes aegypti populations, but the molecular mechanisms underlying resistance remain poorly understood. This study explores the role of a serine protease, AeaSP (AAEL002624), in the potential detoxification ability of spinosad. Our results showed the crude protein of Ae. aegypti degraded approximately 48% of spinosad in vitro within 1 h; based on our previous research, AeaSP was believed to be potentially involved in the degradation of spinosad. Subsequently, AeaSP was recombinantly expressed in vitro, and its enzymatic activity was tested using BAEE as a substrate, with a Michaelis constant (KM) of 0.88 mmol/L. Spatiotemporal expression profiles revealed that AeaSP expression peaked in third instar larvae and thoraxes. In vitro assays showed that AeaSP degraded approximately 63% of spinosad (500 ng/mL) within 6 h. RNAi knockdown of AeaSP significantly increased larval mortality under spinosad exposure and raised spinosad residue levels in larvae by 37% under 0.15 μg/mL spinosad. Our findings suggest AeaSP may play a critical role in detoxifying spinosad in Ae. aegypti and serve as a target for improving spinosad efficacy and mosquito control strategies.</p>\",\"PeriodicalId\":13526,\"journal\":{\"name\":\"Insect Molecular Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Molecular Biology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/imb.12990\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12990","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

Spinosad是一种广泛使用的杀虫剂,可有效控制埃及伊蚊种群,但其耐药性的分子机制尚不清楚。本研究探讨了丝氨酸蛋白酶AeaSP (AAEL002624)在spinosad潜在解毒能力中的作用。结果表明,Ae;埃及伊蚊在体外1小时内降解了约48%的spinosad;根据我们之前的研究,AeaSP被认为可能参与了spinosad的降解。随后,在体外重组表达AeaSP,并以BAEE为底物检测其酶活性,Michaelis常数(KM)为0.88 mmol/L。时空表达谱显示,AeaSP在三龄幼虫和胸虫中表达量最高。体外实验表明,AeaSP在6小时内降解约63%的spinosad (500 ng/mL)。在0.15 μg/mL棘糖浓度下,RNAi敲低AeaSP可显著提高棘糖暴露下的幼虫死亡率,使棘糖残留水平提高37%。我们的研究结果提示AeaSP可能在Ae解毒棘糖中起关键作用。并可作为提高spinosad疗效和蚊虫控制策略的靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of a serine protease involved in spinosad degradation in the yellow fever mosquito, Aedes aegypti.

Spinosad is a widely used insecticide effective in controlling Aedes aegypti populations, but the molecular mechanisms underlying resistance remain poorly understood. This study explores the role of a serine protease, AeaSP (AAEL002624), in the potential detoxification ability of spinosad. Our results showed the crude protein of Ae. aegypti degraded approximately 48% of spinosad in vitro within 1 h; based on our previous research, AeaSP was believed to be potentially involved in the degradation of spinosad. Subsequently, AeaSP was recombinantly expressed in vitro, and its enzymatic activity was tested using BAEE as a substrate, with a Michaelis constant (KM) of 0.88 mmol/L. Spatiotemporal expression profiles revealed that AeaSP expression peaked in third instar larvae and thoraxes. In vitro assays showed that AeaSP degraded approximately 63% of spinosad (500 ng/mL) within 6 h. RNAi knockdown of AeaSP significantly increased larval mortality under spinosad exposure and raised spinosad residue levels in larvae by 37% under 0.15 μg/mL spinosad. Our findings suggest AeaSP may play a critical role in detoxifying spinosad in Ae. aegypti and serve as a target for improving spinosad efficacy and mosquito control strategies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信