神经退行性疾病中的体育锻炼和神经可塑性:运动干预、认知训练和人工智能应用综述。

IF 3.2 3区 医学 Q2 NEUROSCIENCES
Frontiers in Neuroscience Pub Date : 2025-02-28 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1502417
Lamia Ben Ezzdine, Wissem Dhahbi, Ismail Dergaa, Halil İbrahim Ceylan, Noomen Guelmami, Helmi Ben Saad, Karim Chamari, Valentina Stefanica, Abdelfatteh El Omri
{"title":"神经退行性疾病中的体育锻炼和神经可塑性:运动干预、认知训练和人工智能应用综述。","authors":"Lamia Ben Ezzdine, Wissem Dhahbi, Ismail Dergaa, Halil İbrahim Ceylan, Noomen Guelmami, Helmi Ben Saad, Karim Chamari, Valentina Stefanica, Abdelfatteh El Omri","doi":"10.3389/fnins.2025.1502417","DOIUrl":null,"url":null,"abstract":"<p><p>This review aimed to elucidate the mechanisms through which (i) physical activity (PA) enhances neuroplasticity and cognitive function in neurodegenerative disorders, and (ii) identify specific PA interventions for improving cognitive rehabilitation programs. We conducted a literature search in PubMed, Medline, Scopus, Web of Science, and PsycINFO, covering publications from January 1990 to August 2024. The search strategy employed key terms related to neuroplasticity, physical exercise, cognitive function, neurodegenerative disorders, and personalized physical activity. Inclusion criteria included original research on the relationship between PA and neuroplasticity in neurodegenerative disorders, while exclusion criteria eliminated studies focusing solely on pharmacological interventions. The review identified multiple pathways through which PA may enhance neuroplasticity, including releasing neurotrophic factors, modulation of neuroinflammation, reduction of oxidative stress, and enhancement of synaptic connectivity and neurogenesis. Aerobic exercise was found to increase hippocampal volume by 1-2% and improve executive function scores by 5-10% in older adults. Resistance training enhanced cognitive control and memory performance by 12-18% in elderly individuals. Mind-body exercises, such as yoga and tai-chi, improved gray matter density in memory-related brain regions by 3-5% and enhanced emotional regulation scores by 15-20%. Dual-task training improved attention and processing speed by 8-14% in individuals with neurodegenerative disorders. We also discuss the potential role of AI-based exercise and AI cognitive training in preventing and rehabilitating neurodegenerative illnesses, highlighting innovative approaches to personalized interventions and improved patient outcomes. PA significantly enhances neuroplasticity and cognitive function in neurodegenerative disorders through various mechanisms. Aerobic exercise, resistance training, mind-body practices, and dual-task exercises each offer unique cognitive benefits. Implementing these activities in clinical settings can improve patient outcomes. Future research should focus on creating personalized interventions tailored to specific conditions, incorporating personalized physical exercise programs to optimize cognitive rehabilitation.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1502417"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906675/pdf/","citationCount":"0","resultStr":"{\"title\":\"Physical activity and neuroplasticity in neurodegenerative disorders: a comprehensive review of exercise interventions, cognitive training, and AI applications.\",\"authors\":\"Lamia Ben Ezzdine, Wissem Dhahbi, Ismail Dergaa, Halil İbrahim Ceylan, Noomen Guelmami, Helmi Ben Saad, Karim Chamari, Valentina Stefanica, Abdelfatteh El Omri\",\"doi\":\"10.3389/fnins.2025.1502417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This review aimed to elucidate the mechanisms through which (i) physical activity (PA) enhances neuroplasticity and cognitive function in neurodegenerative disorders, and (ii) identify specific PA interventions for improving cognitive rehabilitation programs. We conducted a literature search in PubMed, Medline, Scopus, Web of Science, and PsycINFO, covering publications from January 1990 to August 2024. The search strategy employed key terms related to neuroplasticity, physical exercise, cognitive function, neurodegenerative disorders, and personalized physical activity. Inclusion criteria included original research on the relationship between PA and neuroplasticity in neurodegenerative disorders, while exclusion criteria eliminated studies focusing solely on pharmacological interventions. The review identified multiple pathways through which PA may enhance neuroplasticity, including releasing neurotrophic factors, modulation of neuroinflammation, reduction of oxidative stress, and enhancement of synaptic connectivity and neurogenesis. Aerobic exercise was found to increase hippocampal volume by 1-2% and improve executive function scores by 5-10% in older adults. Resistance training enhanced cognitive control and memory performance by 12-18% in elderly individuals. Mind-body exercises, such as yoga and tai-chi, improved gray matter density in memory-related brain regions by 3-5% and enhanced emotional regulation scores by 15-20%. Dual-task training improved attention and processing speed by 8-14% in individuals with neurodegenerative disorders. We also discuss the potential role of AI-based exercise and AI cognitive training in preventing and rehabilitating neurodegenerative illnesses, highlighting innovative approaches to personalized interventions and improved patient outcomes. PA significantly enhances neuroplasticity and cognitive function in neurodegenerative disorders through various mechanisms. Aerobic exercise, resistance training, mind-body practices, and dual-task exercises each offer unique cognitive benefits. Implementing these activities in clinical settings can improve patient outcomes. Future research should focus on creating personalized interventions tailored to specific conditions, incorporating personalized physical exercise programs to optimize cognitive rehabilitation.</p>\",\"PeriodicalId\":12639,\"journal\":{\"name\":\"Frontiers in Neuroscience\",\"volume\":\"19 \",\"pages\":\"1502417\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11906675/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnins.2025.1502417\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1502417","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本综述旨在阐明以下机制:(i)体育活动(PA)增强神经退行性疾病患者的神经可塑性和认知功能,以及(ii)确定特定的PA干预措施以改善认知康复计划。我们在PubMed, Medline, Scopus, Web of Science和PsycINFO中进行了文献检索,涵盖了1990年1月至2024年8月的出版物。搜索策略采用了与神经可塑性、体育锻炼、认知功能、神经退行性疾病和个性化体育活动相关的关键词。纳入标准包括神经退行性疾病中PA与神经可塑性之间关系的原始研究,而排除标准则排除仅关注药物干预的研究。该综述确定了PA可能增强神经可塑性的多种途径,包括释放神经营养因子、调节神经炎症、减少氧化应激、增强突触连通性和神经发生。研究发现,有氧运动能使老年人的海马体积增加1-2%,执行功能评分提高5-10%。抗阻训练使老年人的认知控制和记忆能力提高了12-18%。瑜伽和太极等身心锻炼能将大脑记忆相关区域的灰质密度提高3-5%,将情绪调节得分提高15-20%。双任务训练使神经退行性疾病患者的注意力和处理速度提高了8-14%。我们还讨论了基于人工智能的运动和人工智能认知训练在预防和康复神经退行性疾病中的潜在作用,强调了个性化干预和改善患者预后的创新方法。PA通过多种机制显著增强神经退行性疾病的神经可塑性和认知功能。有氧运动、抗阻训练、身心练习和双重任务练习都有独特的认知益处。在临床环境中实施这些活动可以改善患者的预后。未来的研究应侧重于针对具体情况制定个性化干预措施,并结合个性化的体育锻炼计划来优化认知康复。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physical activity and neuroplasticity in neurodegenerative disorders: a comprehensive review of exercise interventions, cognitive training, and AI applications.

This review aimed to elucidate the mechanisms through which (i) physical activity (PA) enhances neuroplasticity and cognitive function in neurodegenerative disorders, and (ii) identify specific PA interventions for improving cognitive rehabilitation programs. We conducted a literature search in PubMed, Medline, Scopus, Web of Science, and PsycINFO, covering publications from January 1990 to August 2024. The search strategy employed key terms related to neuroplasticity, physical exercise, cognitive function, neurodegenerative disorders, and personalized physical activity. Inclusion criteria included original research on the relationship between PA and neuroplasticity in neurodegenerative disorders, while exclusion criteria eliminated studies focusing solely on pharmacological interventions. The review identified multiple pathways through which PA may enhance neuroplasticity, including releasing neurotrophic factors, modulation of neuroinflammation, reduction of oxidative stress, and enhancement of synaptic connectivity and neurogenesis. Aerobic exercise was found to increase hippocampal volume by 1-2% and improve executive function scores by 5-10% in older adults. Resistance training enhanced cognitive control and memory performance by 12-18% in elderly individuals. Mind-body exercises, such as yoga and tai-chi, improved gray matter density in memory-related brain regions by 3-5% and enhanced emotional regulation scores by 15-20%. Dual-task training improved attention and processing speed by 8-14% in individuals with neurodegenerative disorders. We also discuss the potential role of AI-based exercise and AI cognitive training in preventing and rehabilitating neurodegenerative illnesses, highlighting innovative approaches to personalized interventions and improved patient outcomes. PA significantly enhances neuroplasticity and cognitive function in neurodegenerative disorders through various mechanisms. Aerobic exercise, resistance training, mind-body practices, and dual-task exercises each offer unique cognitive benefits. Implementing these activities in clinical settings can improve patient outcomes. Future research should focus on creating personalized interventions tailored to specific conditions, incorporating personalized physical exercise programs to optimize cognitive rehabilitation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信