山地湖泊沿岸α、β和γ多样性对比:生境大小和湖内群落结构对细菌生物地理学的影响

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
Andreas Härer, Joshua Dominguez, Jonathan B Shurin, Diana J Rennison
{"title":"山地湖泊沿岸α、β和γ多样性对比:生境大小和湖内群落结构对细菌生物地理学的影响","authors":"Andreas Härer, Joshua Dominguez, Jonathan B Shurin, Diana J Rennison","doi":"10.1093/femsec/fiaf026","DOIUrl":null,"url":null,"abstract":"<p><p>Research on microbial biogeography has revealed key patterns like the diversity-area relationship and distance-decay of similarity. However, how habitat size affects bacterial diversity in freshwater environments remains largely unclear. Here, we characterize bacterial communities in the littoral zones of 10 mountain lakes in the Sierra Nevada, CA, ranging in surface area from 0.92 to 71.72 ha. Despite significant habitat size effects on community composition, dominant bacterial phyla were shared across lakes. We found no evidence for diversity-area relationships, either in single samples (alpha diversity) or cumulative lake-level samples (within-lake gamma diversity), when accounting for environmental variation. Moreover, within-lake beta diversity showed little spatial structuring, with similar bacterial community composition across samples regardless of geographic distance. Gamma diversity did not reach saturation with our sample size, and lake size had no effect on the predicted sample size necessary to reach gamma diversity saturation. Our findings offer new insights into diversity-area dynamics and spatial structuring by investigating alpha, beta, and gamma diversity in freshwater environments. Notably, individual water samples captured much of the bacterial community, with strong correlations between alpha and gamma diversity. These results advance our understanding of microbial biogeography and inform sampling designs for characterizing bacterial diversity in freshwater ecosystems.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963758/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contrasting alpha, beta, and gamma diversity in the littoral zones of mountain lakes: effects of habitat size and within-lake community structuring on bacterial biogeography.\",\"authors\":\"Andreas Härer, Joshua Dominguez, Jonathan B Shurin, Diana J Rennison\",\"doi\":\"10.1093/femsec/fiaf026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Research on microbial biogeography has revealed key patterns like the diversity-area relationship and distance-decay of similarity. However, how habitat size affects bacterial diversity in freshwater environments remains largely unclear. Here, we characterize bacterial communities in the littoral zones of 10 mountain lakes in the Sierra Nevada, CA, ranging in surface area from 0.92 to 71.72 ha. Despite significant habitat size effects on community composition, dominant bacterial phyla were shared across lakes. We found no evidence for diversity-area relationships, either in single samples (alpha diversity) or cumulative lake-level samples (within-lake gamma diversity), when accounting for environmental variation. Moreover, within-lake beta diversity showed little spatial structuring, with similar bacterial community composition across samples regardless of geographic distance. Gamma diversity did not reach saturation with our sample size, and lake size had no effect on the predicted sample size necessary to reach gamma diversity saturation. Our findings offer new insights into diversity-area dynamics and spatial structuring by investigating alpha, beta, and gamma diversity in freshwater environments. Notably, individual water samples captured much of the bacterial community, with strong correlations between alpha and gamma diversity. These results advance our understanding of microbial biogeography and inform sampling designs for characterizing bacterial diversity in freshwater ecosystems.</p>\",\"PeriodicalId\":12312,\"journal\":{\"name\":\"FEMS microbiology ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963758/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"FEMS microbiology ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/femsec/fiaf026\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiaf026","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

微生物生物地理学研究揭示了微生物多样性-面积关系和相似性距离衰减等关键模式。然而,栖息地大小如何影响淡水环境中的细菌多样性仍不清楚。在这里,我们描述了加州内华达山脉10个山地湖泊沿岸地区的细菌群落,面积从0.92到71.72公顷不等。尽管生境大小对群落组成有显著影响,但优势菌门在湖泊间是共有的。当考虑环境变化时,我们没有发现多样性与区域关系的证据,无论是在单个样本(α多样性)还是在累积湖水平样本(湖内γ多样性)中。此外,湖内β多样性表现出较小的空间结构,无论地理距离如何,不同样品的细菌群落组成相似。我们的样本量没有达到伽马多样性饱和,湖泊大小对达到伽马多样性饱和所需的预测样本量没有影响。通过研究淡水环境中的α、β和γ多样性,我们的发现为多样性区域动态和空间结构提供了新的见解。值得注意的是,单个水样捕获了许多细菌群落,在α和γ多样性之间具有很强的相关性。这些结果促进了我们对微生物生物地理学的理解,并为淡水生态系统中细菌多样性的采样设计提供了信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrasting alpha, beta, and gamma diversity in the littoral zones of mountain lakes: effects of habitat size and within-lake community structuring on bacterial biogeography.

Research on microbial biogeography has revealed key patterns like the diversity-area relationship and distance-decay of similarity. However, how habitat size affects bacterial diversity in freshwater environments remains largely unclear. Here, we characterize bacterial communities in the littoral zones of 10 mountain lakes in the Sierra Nevada, CA, ranging in surface area from 0.92 to 71.72 ha. Despite significant habitat size effects on community composition, dominant bacterial phyla were shared across lakes. We found no evidence for diversity-area relationships, either in single samples (alpha diversity) or cumulative lake-level samples (within-lake gamma diversity), when accounting for environmental variation. Moreover, within-lake beta diversity showed little spatial structuring, with similar bacterial community composition across samples regardless of geographic distance. Gamma diversity did not reach saturation with our sample size, and lake size had no effect on the predicted sample size necessary to reach gamma diversity saturation. Our findings offer new insights into diversity-area dynamics and spatial structuring by investigating alpha, beta, and gamma diversity in freshwater environments. Notably, individual water samples captured much of the bacterial community, with strong correlations between alpha and gamma diversity. These results advance our understanding of microbial biogeography and inform sampling designs for characterizing bacterial diversity in freshwater ecosystems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信