Joko Sujiwo, Yousung Jung, Sangrok Lee, Dongwook Kim, Hee-Jeong Lee, Soomin Oh, Hee-Jin Kim, Hyo-Joon Choo, Aera Jang
{"title":"不同冻融方式对韩土鸡胸肉理化、感官及风味特性的影响。","authors":"Joko Sujiwo, Yousung Jung, Sangrok Lee, Dongwook Kim, Hee-Jeong Lee, Soomin Oh, Hee-Jin Kim, Hyo-Joon Choo, Aera Jang","doi":"10.5851/kosfa.2024.e110","DOIUrl":null,"url":null,"abstract":"<p><p>This study compared the physicochemical, sensory, and flavor-related properties of breast from two Korean native chicken (KNC) breeds, Woorimatdag No. 1 (WRMD1) and Woorimatdag No. 2 (WRMD2), to those of broilers, under fresh and various freeze-thaw treatments. WRMD1 generally exhibited the highest shear force value among the breeds, indicating tougher meat. The total aerobic bacteria count was significantly lower (p<0.05) in broiler meat compared to WRMD1 and WRMD2. The appearance perception on the sensory evaluation of fresh WRMD1 meat was significantly lower than that of broiler meat (p<0.05). The chicken breed influenced the fatty acid profile. The KNC breeds exhibited higher levels of essential and taste-related fatty acids compared to the broilers. Notably, WRMD1 exhibited the highest inosine monophosphate concentration, a key nucleotide responsible for umami taste. The freeze-thaw treatment did not significantly influence the fatty acid profile. Several volatile organic compounds such as (S)-(+)-3-methyl-1-pentanol, propanal, 2-methyl-, sec-butylamine, 3,3-dimethyl-1,2-epoxybutane, hexanal, 5-methyl-, 1-octen-3-ol, and 5-ethylcyclopent-1-enecarboxaldehyde were identified as potential markers for differentiating broiler and KNC meat. Overall, the breed had a more significant impact on the physicochemical and flavor characteristics of the meat, while quick freezing effectively preserved its fresh quality.</p>","PeriodicalId":12459,"journal":{"name":"Food Science of Animal Resources","volume":"45 2","pages":"573-597"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907427/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Effect of Different Freezing and Thawing Methods on Physicochemical, Sensory, and Flavor Characteristics of Korean Native Chicken Breast.\",\"authors\":\"Joko Sujiwo, Yousung Jung, Sangrok Lee, Dongwook Kim, Hee-Jeong Lee, Soomin Oh, Hee-Jin Kim, Hyo-Joon Choo, Aera Jang\",\"doi\":\"10.5851/kosfa.2024.e110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study compared the physicochemical, sensory, and flavor-related properties of breast from two Korean native chicken (KNC) breeds, Woorimatdag No. 1 (WRMD1) and Woorimatdag No. 2 (WRMD2), to those of broilers, under fresh and various freeze-thaw treatments. WRMD1 generally exhibited the highest shear force value among the breeds, indicating tougher meat. The total aerobic bacteria count was significantly lower (p<0.05) in broiler meat compared to WRMD1 and WRMD2. The appearance perception on the sensory evaluation of fresh WRMD1 meat was significantly lower than that of broiler meat (p<0.05). The chicken breed influenced the fatty acid profile. The KNC breeds exhibited higher levels of essential and taste-related fatty acids compared to the broilers. Notably, WRMD1 exhibited the highest inosine monophosphate concentration, a key nucleotide responsible for umami taste. The freeze-thaw treatment did not significantly influence the fatty acid profile. Several volatile organic compounds such as (S)-(+)-3-methyl-1-pentanol, propanal, 2-methyl-, sec-butylamine, 3,3-dimethyl-1,2-epoxybutane, hexanal, 5-methyl-, 1-octen-3-ol, and 5-ethylcyclopent-1-enecarboxaldehyde were identified as potential markers for differentiating broiler and KNC meat. Overall, the breed had a more significant impact on the physicochemical and flavor characteristics of the meat, while quick freezing effectively preserved its fresh quality.</p>\",\"PeriodicalId\":12459,\"journal\":{\"name\":\"Food Science of Animal Resources\",\"volume\":\"45 2\",\"pages\":\"573-597\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11907427/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food Science of Animal Resources\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.5851/kosfa.2024.e110\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Science of Animal Resources","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5851/kosfa.2024.e110","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
The Effect of Different Freezing and Thawing Methods on Physicochemical, Sensory, and Flavor Characteristics of Korean Native Chicken Breast.
This study compared the physicochemical, sensory, and flavor-related properties of breast from two Korean native chicken (KNC) breeds, Woorimatdag No. 1 (WRMD1) and Woorimatdag No. 2 (WRMD2), to those of broilers, under fresh and various freeze-thaw treatments. WRMD1 generally exhibited the highest shear force value among the breeds, indicating tougher meat. The total aerobic bacteria count was significantly lower (p<0.05) in broiler meat compared to WRMD1 and WRMD2. The appearance perception on the sensory evaluation of fresh WRMD1 meat was significantly lower than that of broiler meat (p<0.05). The chicken breed influenced the fatty acid profile. The KNC breeds exhibited higher levels of essential and taste-related fatty acids compared to the broilers. Notably, WRMD1 exhibited the highest inosine monophosphate concentration, a key nucleotide responsible for umami taste. The freeze-thaw treatment did not significantly influence the fatty acid profile. Several volatile organic compounds such as (S)-(+)-3-methyl-1-pentanol, propanal, 2-methyl-, sec-butylamine, 3,3-dimethyl-1,2-epoxybutane, hexanal, 5-methyl-, 1-octen-3-ol, and 5-ethylcyclopent-1-enecarboxaldehyde were identified as potential markers for differentiating broiler and KNC meat. Overall, the breed had a more significant impact on the physicochemical and flavor characteristics of the meat, while quick freezing effectively preserved its fresh quality.
期刊介绍:
Food Science of Animal Resources (Food Sci. Anim. Resour.) is an international, peer-reviewed journal publishing original research and review articles on scientific and technological aspects of chemistry, biotechnology, processing, engineering, and microbiology of meat, egg, dairy, and edible insect/worm products.