在产品层面绘制全球价值链。

IF 3 2区 计算机科学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
EPJ Data Science Pub Date : 2025-01-01 Epub Date: 2025-03-12 DOI:10.1140/epjds/s13688-025-00521-5
Lea Karbevska, César A Hidalgo
{"title":"在产品层面绘制全球价值链。","authors":"Lea Karbevska, César A Hidalgo","doi":"10.1140/epjds/s13688-025-00521-5","DOIUrl":null,"url":null,"abstract":"<p><p>Value chain data is crucial for navigating economic disruptions. Yet, despite its importance, we lack publicly available product-level value chain datasets, since resources such as the \"World Input-Output Database\", \"Inter-Country Input-Output Tables\", \"EXIOBASE\", and \"EORA\", lack information about products (e.g. Radio Receivers, Telephones, Electrical Capacitors, LCDs, etc.) and instead rely on aggregate industrial sectors (e.g. Electrical Equipment, Telecommunications). Here, we introduce a method that leverages ideas from machine learning and trade theory to infer product-level value chain relationships from fine-grained international trade data. We apply our method to data summarizing the exports and imports of 1200+ products and 250+ world regions (e.g. states in the U.S., prefectures in Japan, etc.) to infer value chain information implicit in their trade patterns. In short, we leverage the idea that due to global value chains, regions specialized in the export of a product will tend to specialize in the import of its inputs. We use this idea to develop a novel proportional allocation model to estimate product-level trade flows between regions and countries. This contributes a method to approximate value chain data at the product level that should be of interest to people working in logistics, trade, and sustainable development.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1140/epjds/s13688-025-00521-5.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"14 1","pages":"21"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903633/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mapping global value chains at the product level.\",\"authors\":\"Lea Karbevska, César A Hidalgo\",\"doi\":\"10.1140/epjds/s13688-025-00521-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Value chain data is crucial for navigating economic disruptions. Yet, despite its importance, we lack publicly available product-level value chain datasets, since resources such as the \\\"World Input-Output Database\\\", \\\"Inter-Country Input-Output Tables\\\", \\\"EXIOBASE\\\", and \\\"EORA\\\", lack information about products (e.g. Radio Receivers, Telephones, Electrical Capacitors, LCDs, etc.) and instead rely on aggregate industrial sectors (e.g. Electrical Equipment, Telecommunications). Here, we introduce a method that leverages ideas from machine learning and trade theory to infer product-level value chain relationships from fine-grained international trade data. We apply our method to data summarizing the exports and imports of 1200+ products and 250+ world regions (e.g. states in the U.S., prefectures in Japan, etc.) to infer value chain information implicit in their trade patterns. In short, we leverage the idea that due to global value chains, regions specialized in the export of a product will tend to specialize in the import of its inputs. We use this idea to develop a novel proportional allocation model to estimate product-level trade flows between regions and countries. This contributes a method to approximate value chain data at the product level that should be of interest to people working in logistics, trade, and sustainable development.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1140/epjds/s13688-025-00521-5.</p>\",\"PeriodicalId\":11887,\"journal\":{\"name\":\"EPJ Data Science\",\"volume\":\"14 1\",\"pages\":\"21\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11903633/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Data Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1140/epjds/s13688-025-00521-5\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-025-00521-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

价值链数据对于应对经济动荡至关重要。然而,尽管它很重要,但我们缺乏公开可用的产品级价值链数据集,因为诸如“世界投入产出数据库”、“国家间投入产出表”、“EXIOBASE”和“EORA”等资源缺乏有关产品的信息(例如无线电接收器、电话、电容器、lcd等),而是依赖于总工业部门(例如电气设备、电信)。在这里,我们引入了一种方法,利用机器学习和贸易理论的思想,从细粒度的国际贸易数据中推断产品级价值链关系。我们将我们的方法应用于汇总1200多种产品和250多个世界地区(如美国各州,日本县等)的进出口数据,以推断其贸易模式中隐含的价值链信息。简而言之,我们利用了这样一种观点,即由于全球价值链的存在,专门从事某种产品出口的地区将倾向于专门从事该产品投入的进口。我们利用这一思想开发了一个新的比例分配模型来估计地区和国家之间的产品级贸易流量。这提供了一种在产品层面近似价值链数据的方法,对于从事物流、贸易和可持续发展工作的人来说应该是感兴趣的。补充信息:在线版本包含补充资料,可在10.1140/epjds/s13688-025-00521-5获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mapping global value chains at the product level.

Value chain data is crucial for navigating economic disruptions. Yet, despite its importance, we lack publicly available product-level value chain datasets, since resources such as the "World Input-Output Database", "Inter-Country Input-Output Tables", "EXIOBASE", and "EORA", lack information about products (e.g. Radio Receivers, Telephones, Electrical Capacitors, LCDs, etc.) and instead rely on aggregate industrial sectors (e.g. Electrical Equipment, Telecommunications). Here, we introduce a method that leverages ideas from machine learning and trade theory to infer product-level value chain relationships from fine-grained international trade data. We apply our method to data summarizing the exports and imports of 1200+ products and 250+ world regions (e.g. states in the U.S., prefectures in Japan, etc.) to infer value chain information implicit in their trade patterns. In short, we leverage the idea that due to global value chains, regions specialized in the export of a product will tend to specialize in the import of its inputs. We use this idea to develop a novel proportional allocation model to estimate product-level trade flows between regions and countries. This contributes a method to approximate value chain data at the product level that should be of interest to people working in logistics, trade, and sustainable development.

Supplementary information: The online version contains supplementary material available at 10.1140/epjds/s13688-025-00521-5.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Data Science
EPJ Data Science MATHEMATICS, INTERDISCIPLINARY APPLICATIONS -
CiteScore
6.10
自引率
5.60%
发文量
53
审稿时长
13 weeks
期刊介绍: EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信