β-乳球蛋白与羧甲基纤维素偶联的功能改变。

IF 2 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Cytotechnology Pub Date : 2025-06-01 Epub Date: 2025-03-15 DOI:10.1007/s10616-025-00741-7
Tatsuya Arai, Moeko Ono, Maiko Yoneda, Marika Sugamura, Tadashi Yoshida, Makoto Hattori
{"title":"β-乳球蛋白与羧甲基纤维素偶联的功能改变。","authors":"Tatsuya Arai, Moeko Ono, Maiko Yoneda, Marika Sugamura, Tadashi Yoshida, Makoto Hattori","doi":"10.1007/s10616-025-00741-7","DOIUrl":null,"url":null,"abstract":"<p><p>β-lactoglobulin (BLG) and carboxymethylcellulose (CMC) were conjugated by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). The BLG-CMC conjugates with different CMC content and molecular weights were prepared. Confirmation of conjugation was carried out by SDS-PAGE. CD spectra revealed that the secondary structure of BLG had maintained in the conjugates. Fluorescence studies indicated that the conformation around Trp had not changed in the conjugates. Retinol-binding activity indicated that the retinol-binding site of BLG changed by the conjugation. Equilibrium constants (K<sub>AS</sub>) of anti-BLG monoclonal antibodies (mAbs) to BLG after conjugating with CMC by competitive ELISA indicated that the structure around <sup>15</sup>Val-<sup>29</sup>Ile and <sup>8</sup>Lys-<sup>19</sup>Trp maintained their native structure, and the structure around <sup>125</sup>Thr-<sup>135</sup>Lys changed by conjugation. By conjugation with CMC, emulsifying property of BLG in the acidic pH region and in the presence of NaCl were much improved. Because acidic pH and salt are frequently used in food, the BLG-CMC conjugates are considered to be useful for food applications. Immunogenicity of BLG in BALB/c mice was reduced by this conjugation. In particular, there was a marked improvement in both emulsifying property and reduced immunogenicity in the BLG-high molecular weight (HMW) CMC conjugate. Therefore, conjugation with CMC is an effective way to improve BLG's function, and CMC with a high molecular weight is preferable.</p>","PeriodicalId":10890,"journal":{"name":"Cytotechnology","volume":"77 3","pages":"79"},"PeriodicalIF":2.0000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910463/pdf/","citationCount":"0","resultStr":"{\"title\":\"Functional changes in β-lactoglobulin by conjugation with carboxymethyl cellulose.\",\"authors\":\"Tatsuya Arai, Moeko Ono, Maiko Yoneda, Marika Sugamura, Tadashi Yoshida, Makoto Hattori\",\"doi\":\"10.1007/s10616-025-00741-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β-lactoglobulin (BLG) and carboxymethylcellulose (CMC) were conjugated by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). The BLG-CMC conjugates with different CMC content and molecular weights were prepared. Confirmation of conjugation was carried out by SDS-PAGE. CD spectra revealed that the secondary structure of BLG had maintained in the conjugates. Fluorescence studies indicated that the conformation around Trp had not changed in the conjugates. Retinol-binding activity indicated that the retinol-binding site of BLG changed by the conjugation. Equilibrium constants (K<sub>AS</sub>) of anti-BLG monoclonal antibodies (mAbs) to BLG after conjugating with CMC by competitive ELISA indicated that the structure around <sup>15</sup>Val-<sup>29</sup>Ile and <sup>8</sup>Lys-<sup>19</sup>Trp maintained their native structure, and the structure around <sup>125</sup>Thr-<sup>135</sup>Lys changed by conjugation. By conjugation with CMC, emulsifying property of BLG in the acidic pH region and in the presence of NaCl were much improved. Because acidic pH and salt are frequently used in food, the BLG-CMC conjugates are considered to be useful for food applications. Immunogenicity of BLG in BALB/c mice was reduced by this conjugation. In particular, there was a marked improvement in both emulsifying property and reduced immunogenicity in the BLG-high molecular weight (HMW) CMC conjugate. Therefore, conjugation with CMC is an effective way to improve BLG's function, and CMC with a high molecular weight is preferable.</p>\",\"PeriodicalId\":10890,\"journal\":{\"name\":\"Cytotechnology\",\"volume\":\"77 3\",\"pages\":\"79\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11910463/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytotechnology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-025-00741-7\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-025-00741-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

用1-乙基-3-(3-二甲氨基丙基)碳二亚胺(EDC)偶联β-乳球蛋白(BLG)和羧甲基纤维素(CMC)。制备了不同CMC含量和分子量的BLG-CMC偶联物。通过SDS-PAGE进行偶联确认。CD光谱显示,BLG在共轭物中保持了二级结构。荧光研究表明,共轭物中Trp周围的构象没有改变。视黄醇结合活性表明BLG的视黄醇结合位点发生了改变。与CMC偶联后抗BLG单克隆抗体(mAbs)的平衡常数(KAS)表明,15Val-29Ile和8Lys-19Trp周围的结构保持其天然结构,125Thr-135Lys周围的结构因偶联而改变。通过与CMC的偶联,可以明显改善BLG在酸性pH区和NaCl存在下的乳化性能。由于酸性pH值和盐在食品中经常使用,BLG-CMC偶联物被认为是有用的食品应用。这种结合降低了BALB/c小鼠的BLG免疫原性。特别是,blg -高分子量(HMW) CMC偶联物的乳化性能和免疫原性均有显著改善。因此,与CMC偶联是改善BLG功能的有效途径,高分子量的CMC是首选。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional changes in β-lactoglobulin by conjugation with carboxymethyl cellulose.

β-lactoglobulin (BLG) and carboxymethylcellulose (CMC) were conjugated by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC). The BLG-CMC conjugates with different CMC content and molecular weights were prepared. Confirmation of conjugation was carried out by SDS-PAGE. CD spectra revealed that the secondary structure of BLG had maintained in the conjugates. Fluorescence studies indicated that the conformation around Trp had not changed in the conjugates. Retinol-binding activity indicated that the retinol-binding site of BLG changed by the conjugation. Equilibrium constants (KAS) of anti-BLG monoclonal antibodies (mAbs) to BLG after conjugating with CMC by competitive ELISA indicated that the structure around 15Val-29Ile and 8Lys-19Trp maintained their native structure, and the structure around 125Thr-135Lys changed by conjugation. By conjugation with CMC, emulsifying property of BLG in the acidic pH region and in the presence of NaCl were much improved. Because acidic pH and salt are frequently used in food, the BLG-CMC conjugates are considered to be useful for food applications. Immunogenicity of BLG in BALB/c mice was reduced by this conjugation. In particular, there was a marked improvement in both emulsifying property and reduced immunogenicity in the BLG-high molecular weight (HMW) CMC conjugate. Therefore, conjugation with CMC is an effective way to improve BLG's function, and CMC with a high molecular weight is preferable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cytotechnology
Cytotechnology 生物-生物工程与应用微生物
CiteScore
4.10
自引率
0.00%
发文量
49
审稿时长
6-12 weeks
期刊介绍: The scope of the Journal includes: 1. The derivation, genetic modification and characterization of cell lines, genetic and phenotypic regulation, control of cellular metabolism, cell physiology and biochemistry related to cell function, performance and expression of cell products. 2. Cell culture techniques, substrates, environmental requirements and optimization, cloning, hybridization and molecular biology, including genomic and proteomic tools. 3. Cell culture systems, processes, reactors, scale-up, and industrial production. Descriptions of the design or construction of equipment, media or quality control procedures, that are ancillary to cellular research. 4. The application of animal/human cells in research in the field of stem cell research including maintenance of stemness, differentiation, genetics, and senescence, cancer research, research in immunology, as well as applications in tissue engineering and gene therapy. 5. The use of cell cultures as a substrate for bioassays, biomedical applications and in particular as a replacement for animal models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信