{"title":"贝叶斯网络上标量回归及其在脑功能连接中的应用。","authors":"Xiaomeng Ju, Hyung G Park, Thaddeus Tarpey","doi":"10.1093/biomtc/ujaf023","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a Bayesian regression model relating scalar outcomes to brain functional connectivity represented as symmetric positive definite (SPD) matrices. Unlike many proposals that simply vectorize the matrix-valued connectivity predictors, thereby ignoring their geometric structure, the method presented here respects the Riemannian geometry of SPD matrices by using a tangent space modeling. Dimension reduction is performed in the tangent space, relating the resulting low-dimensional representations to the responses. The dimension reduction matrix is learned in a supervised manner with a sparsity-inducing prior imposed on a Stiefel manifold to prevent overfitting. Our method yields a parsimonious regression model that allows uncertainty quantification of all model parameters and identification of key brain regions that predict the outcomes. We demonstrate the performance of our approach in simulation settings and through a case study to predict Picture Vocabulary scores using data from the Human Connectome Project.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"81 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911722/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bayesian scalar-on-network regression with applications to brain functional connectivity.\",\"authors\":\"Xiaomeng Ju, Hyung G Park, Thaddeus Tarpey\",\"doi\":\"10.1093/biomtc/ujaf023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper presents a Bayesian regression model relating scalar outcomes to brain functional connectivity represented as symmetric positive definite (SPD) matrices. Unlike many proposals that simply vectorize the matrix-valued connectivity predictors, thereby ignoring their geometric structure, the method presented here respects the Riemannian geometry of SPD matrices by using a tangent space modeling. Dimension reduction is performed in the tangent space, relating the resulting low-dimensional representations to the responses. The dimension reduction matrix is learned in a supervised manner with a sparsity-inducing prior imposed on a Stiefel manifold to prevent overfitting. Our method yields a parsimonious regression model that allows uncertainty quantification of all model parameters and identification of key brain regions that predict the outcomes. We demonstrate the performance of our approach in simulation settings and through a case study to predict Picture Vocabulary scores using data from the Human Connectome Project.</p>\",\"PeriodicalId\":8930,\"journal\":{\"name\":\"Biometrics\",\"volume\":\"81 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11911722/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometrics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biomtc/ujaf023\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujaf023","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Bayesian scalar-on-network regression with applications to brain functional connectivity.
This paper presents a Bayesian regression model relating scalar outcomes to brain functional connectivity represented as symmetric positive definite (SPD) matrices. Unlike many proposals that simply vectorize the matrix-valued connectivity predictors, thereby ignoring their geometric structure, the method presented here respects the Riemannian geometry of SPD matrices by using a tangent space modeling. Dimension reduction is performed in the tangent space, relating the resulting low-dimensional representations to the responses. The dimension reduction matrix is learned in a supervised manner with a sparsity-inducing prior imposed on a Stiefel manifold to prevent overfitting. Our method yields a parsimonious regression model that allows uncertainty quantification of all model parameters and identification of key brain regions that predict the outcomes. We demonstrate the performance of our approach in simulation settings and through a case study to predict Picture Vocabulary scores using data from the Human Connectome Project.
期刊介绍:
The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.