Yifeng Gong, Norapat Klinkaewboonwong, Risa Hayashi, Yan Zhou, Ikuhisa Nishida, Rei Saito, Tetsuya Goshima, Tomoyuki Nishi, Daisuke Watanabe, Dai Hirata, Takeshi Akao, Yoshikazu Ohya
{"title":"具有增强银杏香气突变的清酒酵母菌的组合选育。","authors":"Yifeng Gong, Norapat Klinkaewboonwong, Risa Hayashi, Yan Zhou, Ikuhisa Nishida, Rei Saito, Tetsuya Goshima, Tomoyuki Nishi, Daisuke Watanabe, Dai Hirata, Takeshi Akao, Yoshikazu Ohya","doi":"10.1093/bbb/zbaf029","DOIUrl":null,"url":null,"abstract":"<p><p>Isoamyl acetate and ethyl caproate are the primary aroma compounds responsible for the fruity fragrance characteristic of Ginjo sake. Simultaneous high-level production of both compounds is crucial to achieving a balanced aroma and complex flavor. Isoamyl acetate is predominantly produced by hda1∆/hda1∆ and LEU4(G516S)/LEU4(G516S), while ethyl caproate is produced in high quantities by FAS2(G1250S)/FAS2(G1250S). In this study, to maximize the production of both aroma compounds, genome editing was employed to generate sake yeast strains combining these mutations. After small-scale fermentation tests were conducted to evaluate the production of aroma compounds, we found that the isoamyl acetate-enhancing effect of hda1∆/hda1∆ was almost completely masked by FAS2(G1250S)/FAS2(G1250S). In contrast, the effects of LEU4(G516S)/LEU4(G516S) were not entirely masked by FAS2(G1250S)/FAS2(G1250S), resulting in 2.4- and 5.4-fold greater production of isoamyl acetate and ethyl caproate, respectively. This study highlights the utility of genome editing in the combinatorial breeding of sake yeast.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":"910-917"},"PeriodicalIF":1.4000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatory breeding of sake yeast strains with mutations that enhance Ginjo aroma production.\",\"authors\":\"Yifeng Gong, Norapat Klinkaewboonwong, Risa Hayashi, Yan Zhou, Ikuhisa Nishida, Rei Saito, Tetsuya Goshima, Tomoyuki Nishi, Daisuke Watanabe, Dai Hirata, Takeshi Akao, Yoshikazu Ohya\",\"doi\":\"10.1093/bbb/zbaf029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Isoamyl acetate and ethyl caproate are the primary aroma compounds responsible for the fruity fragrance characteristic of Ginjo sake. Simultaneous high-level production of both compounds is crucial to achieving a balanced aroma and complex flavor. Isoamyl acetate is predominantly produced by hda1∆/hda1∆ and LEU4(G516S)/LEU4(G516S), while ethyl caproate is produced in high quantities by FAS2(G1250S)/FAS2(G1250S). In this study, to maximize the production of both aroma compounds, genome editing was employed to generate sake yeast strains combining these mutations. After small-scale fermentation tests were conducted to evaluate the production of aroma compounds, we found that the isoamyl acetate-enhancing effect of hda1∆/hda1∆ was almost completely masked by FAS2(G1250S)/FAS2(G1250S). In contrast, the effects of LEU4(G516S)/LEU4(G516S) were not entirely masked by FAS2(G1250S)/FAS2(G1250S), resulting in 2.4- and 5.4-fold greater production of isoamyl acetate and ethyl caproate, respectively. This study highlights the utility of genome editing in the combinatorial breeding of sake yeast.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":\" \",\"pages\":\"910-917\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbaf029\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbaf029","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Combinatory breeding of sake yeast strains with mutations that enhance Ginjo aroma production.
Isoamyl acetate and ethyl caproate are the primary aroma compounds responsible for the fruity fragrance characteristic of Ginjo sake. Simultaneous high-level production of both compounds is crucial to achieving a balanced aroma and complex flavor. Isoamyl acetate is predominantly produced by hda1∆/hda1∆ and LEU4(G516S)/LEU4(G516S), while ethyl caproate is produced in high quantities by FAS2(G1250S)/FAS2(G1250S). In this study, to maximize the production of both aroma compounds, genome editing was employed to generate sake yeast strains combining these mutations. After small-scale fermentation tests were conducted to evaluate the production of aroma compounds, we found that the isoamyl acetate-enhancing effect of hda1∆/hda1∆ was almost completely masked by FAS2(G1250S)/FAS2(G1250S). In contrast, the effects of LEU4(G516S)/LEU4(G516S) were not entirely masked by FAS2(G1250S)/FAS2(G1250S), resulting in 2.4- and 5.4-fold greater production of isoamyl acetate and ethyl caproate, respectively. This study highlights the utility of genome editing in the combinatorial breeding of sake yeast.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).