含桥接二羧酸盐和1,10-菲罗啉配体的铜(II)、锰(II)和银(I)配合物诱导的凋亡细胞死亡:抗癌活性的多模式之一?

IF 4.1 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ella O'Sullivan, Denis O'Shea, Michael Devereux, Orla Howe
{"title":"含桥接二羧酸盐和1,10-菲罗啉配体的铜(II)、锰(II)和银(I)配合物诱导的凋亡细胞死亡:抗癌活性的多模式之一?","authors":"Ella O'Sullivan, Denis O'Shea, Michael Devereux, Orla Howe","doi":"10.1007/s10534-025-00676-8","DOIUrl":null,"url":null,"abstract":"<p><p>Cu(II), Mn(II) and Ag(I) complexes incorporating bridging dicarboxylate and 1,10-phenanthroline ligands have exhibited anti-cancer potential with significant in vitro and in vivo cytotoxic efficacies. Our study focuses on regulated cell death process of apoptosis as a mode of action of the anti-cancer activity by the complexes. Cytotoxicity screening of the complexes demonstrated all the metal-dicarboxylate-phenanthroline complexes exhibit superior activity compared to their non-phenanthroline containing precursors, in addition to cisplatin. The Cu(II) and Mn(II) complexes were shown to induce reactive oxygen species (ROS) but this was not observed for the Ag(I) analogues. Furthermore, apoptosis was found to be induced by all the metal-phenanthroline complexes to varying degrees contingent on the type of metal centre in the complex. Apoptotic gene expression analysis established the predominant activation of the intrinsic apoptotic pathway, with co-stimulation of the extrinsic pathway observed in some cases. The mechanistic data provided within this study highlights the multi-modal activity of the metal-phenanthroline complexes contingent on the type of metal present, warranting continued investigation of their biological modes of action beyond apoptosis induction.</p>","PeriodicalId":491,"journal":{"name":"Biometals","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apoptotic cell death induced by copper (II), manganese (II) and silver (I) complexes containing bridging dicarboxylate and 1,10-phenanthroline ligands: one of the multi-modes of anticancer activity?\",\"authors\":\"Ella O'Sullivan, Denis O'Shea, Michael Devereux, Orla Howe\",\"doi\":\"10.1007/s10534-025-00676-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cu(II), Mn(II) and Ag(I) complexes incorporating bridging dicarboxylate and 1,10-phenanthroline ligands have exhibited anti-cancer potential with significant in vitro and in vivo cytotoxic efficacies. Our study focuses on regulated cell death process of apoptosis as a mode of action of the anti-cancer activity by the complexes. Cytotoxicity screening of the complexes demonstrated all the metal-dicarboxylate-phenanthroline complexes exhibit superior activity compared to their non-phenanthroline containing precursors, in addition to cisplatin. The Cu(II) and Mn(II) complexes were shown to induce reactive oxygen species (ROS) but this was not observed for the Ag(I) analogues. Furthermore, apoptosis was found to be induced by all the metal-phenanthroline complexes to varying degrees contingent on the type of metal centre in the complex. Apoptotic gene expression analysis established the predominant activation of the intrinsic apoptotic pathway, with co-stimulation of the extrinsic pathway observed in some cases. The mechanistic data provided within this study highlights the multi-modal activity of the metal-phenanthroline complexes contingent on the type of metal present, warranting continued investigation of their biological modes of action beyond apoptosis induction.</p>\",\"PeriodicalId\":491,\"journal\":{\"name\":\"Biometals\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biometals\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10534-025-00676-8\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometals","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10534-025-00676-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

含有桥接二羧酸盐和1,10-菲罗啉配体的Cu(II), Mn(II)和Ag(I)配合物显示出抗癌潜力,具有显着的体外和体内细胞毒性作用。我们的研究重点是调控细胞凋亡的死亡过程,作为抗癌活性复合物的一种作用模式。细胞毒性筛选表明,除顺铂外,所有金属-二羧酸-菲罗啉配合物都比不含菲罗啉的前体具有更强的活性。Cu(II)和Mn(II)配合物被证明可以诱导活性氧(ROS),但Ag(I)类似物没有观察到这一点。此外,发现所有的金属-菲罗啉配合物都能不同程度地诱导细胞凋亡,这取决于配合物中金属中心的类型。凋亡基因表达分析确定了内在凋亡途径的主要激活,在某些情况下观察到外源性途径的共同刺激。本研究中提供的机制数据强调了金属-菲罗啉配合物的多模态活性取决于存在的金属类型,这保证了其除诱导细胞凋亡外的生物作用模式的继续研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Apoptotic cell death induced by copper (II), manganese (II) and silver (I) complexes containing bridging dicarboxylate and 1,10-phenanthroline ligands: one of the multi-modes of anticancer activity?

Cu(II), Mn(II) and Ag(I) complexes incorporating bridging dicarboxylate and 1,10-phenanthroline ligands have exhibited anti-cancer potential with significant in vitro and in vivo cytotoxic efficacies. Our study focuses on regulated cell death process of apoptosis as a mode of action of the anti-cancer activity by the complexes. Cytotoxicity screening of the complexes demonstrated all the metal-dicarboxylate-phenanthroline complexes exhibit superior activity compared to their non-phenanthroline containing precursors, in addition to cisplatin. The Cu(II) and Mn(II) complexes were shown to induce reactive oxygen species (ROS) but this was not observed for the Ag(I) analogues. Furthermore, apoptosis was found to be induced by all the metal-phenanthroline complexes to varying degrees contingent on the type of metal centre in the complex. Apoptotic gene expression analysis established the predominant activation of the intrinsic apoptotic pathway, with co-stimulation of the extrinsic pathway observed in some cases. The mechanistic data provided within this study highlights the multi-modal activity of the metal-phenanthroline complexes contingent on the type of metal present, warranting continued investigation of their biological modes of action beyond apoptosis induction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biometals
Biometals 生物-生化与分子生物学
CiteScore
5.90
自引率
8.60%
发文量
111
审稿时长
3 months
期刊介绍: BioMetals is the only established journal to feature the important role of metal ions in chemistry, biology, biochemistry, environmental science, and medicine. BioMetals is an international, multidisciplinary journal singularly devoted to the rapid publication of the fundamental advances of both basic and applied research in this field. BioMetals offers a forum for innovative research and clinical results on the structure and function of: - metal ions - metal chelates, - siderophores, - metal-containing proteins - biominerals in all biosystems. - BioMetals rapidly publishes original articles and reviews. BioMetals is a journal for metals researchers who practice in medicine, biochemistry, pharmacology, toxicology, microbiology, cell biology, chemistry, and plant physiology who are based academic, industrial and government laboratories.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信