{"title":"利用聚吡咯涂层铁氧化物开发新型多响应 4D 印刷智能纳米复合材料,实现远程自适应转换。","authors":"Shengbo Guo, Tarun Agarwal, Shuaiqi Song, Kausik Sarkar, Lijie Grace Zhang","doi":"10.1039/d4mh01804d","DOIUrl":null,"url":null,"abstract":"<p><p>Four-dimensional (4D) printing, a state-of-the-art additive manufacturing technology, enables the creation of objects capable of changing shape, properties, or functionality over time in response to external stimuli. However, the lack of effective remote control and reliance on a single actuation method pose significant challenges, limiting its applications in various fields. This study aims to address these limitations by developing a novel multi-responsive nanocomposite. By coating near-infrared light (NIR)-responsive polypyrrole (PPy) onto the surface of magnetic iron oxide (Fe<sub>2</sub>O<sub>3</sub>) nanoparticles (NPs), multi-responsive PPy@Fe<sub>2</sub>O<sub>3</sub> NPs were synthesized. Doping PPy@Fe<sub>2</sub>O<sub>3</sub> into a thermo-responsive shape memory polymer (SMP) matrix created a nanocomposite with excellent NIR and magnetic responsiveness, enabling dynamic, remote-controlled shape transformation of printed objects with precise timing and positioning using NIR and a magnetic field. Using the nanocomposite, a proof-of-concept semi-tubular construct was fabricated to evaluate its controllable transformation capability and assess the potential for modulating neural stem cell (NSC) behaviors. Furthermore, three proof-of-concept smart robots with distinct features were designed and fabricated for cargo delivery in diverse scenarios and different purposes. Importantly, all complex operations of these robots were remotely controlled using NIR illumination and an external magnetic field. This novel approach demonstrates significant progress in addressing the key challenges of remote control and actuation in 4D printing, highlighting its potential for enhanced versatility and functionality across various applications.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of novel multi-responsive 4D printed smart nanocomposites with polypyrrole coated iron oxides for remote and adaptive transformation.\",\"authors\":\"Shengbo Guo, Tarun Agarwal, Shuaiqi Song, Kausik Sarkar, Lijie Grace Zhang\",\"doi\":\"10.1039/d4mh01804d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Four-dimensional (4D) printing, a state-of-the-art additive manufacturing technology, enables the creation of objects capable of changing shape, properties, or functionality over time in response to external stimuli. However, the lack of effective remote control and reliance on a single actuation method pose significant challenges, limiting its applications in various fields. This study aims to address these limitations by developing a novel multi-responsive nanocomposite. By coating near-infrared light (NIR)-responsive polypyrrole (PPy) onto the surface of magnetic iron oxide (Fe<sub>2</sub>O<sub>3</sub>) nanoparticles (NPs), multi-responsive PPy@Fe<sub>2</sub>O<sub>3</sub> NPs were synthesized. Doping PPy@Fe<sub>2</sub>O<sub>3</sub> into a thermo-responsive shape memory polymer (SMP) matrix created a nanocomposite with excellent NIR and magnetic responsiveness, enabling dynamic, remote-controlled shape transformation of printed objects with precise timing and positioning using NIR and a magnetic field. Using the nanocomposite, a proof-of-concept semi-tubular construct was fabricated to evaluate its controllable transformation capability and assess the potential for modulating neural stem cell (NSC) behaviors. Furthermore, three proof-of-concept smart robots with distinct features were designed and fabricated for cargo delivery in diverse scenarios and different purposes. Importantly, all complex operations of these robots were remotely controlled using NIR illumination and an external magnetic field. This novel approach demonstrates significant progress in addressing the key challenges of remote control and actuation in 4D printing, highlighting its potential for enhanced versatility and functionality across various applications.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d4mh01804d\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01804d","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Development of novel multi-responsive 4D printed smart nanocomposites with polypyrrole coated iron oxides for remote and adaptive transformation.
Four-dimensional (4D) printing, a state-of-the-art additive manufacturing technology, enables the creation of objects capable of changing shape, properties, or functionality over time in response to external stimuli. However, the lack of effective remote control and reliance on a single actuation method pose significant challenges, limiting its applications in various fields. This study aims to address these limitations by developing a novel multi-responsive nanocomposite. By coating near-infrared light (NIR)-responsive polypyrrole (PPy) onto the surface of magnetic iron oxide (Fe2O3) nanoparticles (NPs), multi-responsive PPy@Fe2O3 NPs were synthesized. Doping PPy@Fe2O3 into a thermo-responsive shape memory polymer (SMP) matrix created a nanocomposite with excellent NIR and magnetic responsiveness, enabling dynamic, remote-controlled shape transformation of printed objects with precise timing and positioning using NIR and a magnetic field. Using the nanocomposite, a proof-of-concept semi-tubular construct was fabricated to evaluate its controllable transformation capability and assess the potential for modulating neural stem cell (NSC) behaviors. Furthermore, three proof-of-concept smart robots with distinct features were designed and fabricated for cargo delivery in diverse scenarios and different purposes. Importantly, all complex operations of these robots were remotely controlled using NIR illumination and an external magnetic field. This novel approach demonstrates significant progress in addressing the key challenges of remote control and actuation in 4D printing, highlighting its potential for enhanced versatility and functionality across various applications.