矿物胁迫下远距离通讯解码:植物抗逆性维管信号和分子工具研究进展。

IF 6 1区 生物学 Q1 PLANT SCIENCES
Chao Xia, Juliana Miranda, David Mendoza-Cozatl, Byung-Koo Ham, Jianxin Ma, Cankui Zhang
{"title":"矿物胁迫下远距离通讯解码:植物抗逆性维管信号和分子工具研究进展。","authors":"Chao Xia, Juliana Miranda, David Mendoza-Cozatl, Byung-Koo Ham, Jianxin Ma, Cankui Zhang","doi":"10.1111/pce.15475","DOIUrl":null,"url":null,"abstract":"<p><p>Mineral nutrients are essential for plant growth, development and crop yield. Under mineral deficient conditions, plants rely on a sophisticated network of signalling pathways to coordinate their molecular, physiological, and morphological responses. Recent research has shown that long-distance signalling pathways play a pivotal role in maintaining mineral homeostasis and optimising growth. This review explores the intricate mechanisms of long-distance signalling under mineral deficiencies, emphasising its importance as a communication network between roots and shoots. Through the vascular tissues, plants transport an array of signalling molecules, including phytohormones, small RNAs, proteins, small peptides, and mobile mRNAs, to mediate systemic responses. Vascular tissues, particularly companion cells, are critical hubs for sensing and relaying mineral deficiency signals, leading to rapid changes in mineral uptake and optimised root morphology. We highlight the roles of key signalling molecules in regulating mineral acquisition and stress adaptation. Advances in molecular tools, including TRAP-Seq, heterografting, and single-cell RNA sequencing, have recently unveiled novel aspects of long-distance signalling and its regulatory components. These insights underscore the essential role of vascular-mediated communication in enabling plants to navigate heterogeneous mineral distribution environments and suggest new avenues for improving crop resilience and mineral use efficiency.</p>","PeriodicalId":222,"journal":{"name":"Plant, Cell & Environment","volume":" ","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding Long-Distance Communication Under Mineral Stress: Advances in Vascular Signalling and Molecular Tools for Plant Resilience.\",\"authors\":\"Chao Xia, Juliana Miranda, David Mendoza-Cozatl, Byung-Koo Ham, Jianxin Ma, Cankui Zhang\",\"doi\":\"10.1111/pce.15475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mineral nutrients are essential for plant growth, development and crop yield. Under mineral deficient conditions, plants rely on a sophisticated network of signalling pathways to coordinate their molecular, physiological, and morphological responses. Recent research has shown that long-distance signalling pathways play a pivotal role in maintaining mineral homeostasis and optimising growth. This review explores the intricate mechanisms of long-distance signalling under mineral deficiencies, emphasising its importance as a communication network between roots and shoots. Through the vascular tissues, plants transport an array of signalling molecules, including phytohormones, small RNAs, proteins, small peptides, and mobile mRNAs, to mediate systemic responses. Vascular tissues, particularly companion cells, are critical hubs for sensing and relaying mineral deficiency signals, leading to rapid changes in mineral uptake and optimised root morphology. We highlight the roles of key signalling molecules in regulating mineral acquisition and stress adaptation. Advances in molecular tools, including TRAP-Seq, heterografting, and single-cell RNA sequencing, have recently unveiled novel aspects of long-distance signalling and its regulatory components. These insights underscore the essential role of vascular-mediated communication in enabling plants to navigate heterogeneous mineral distribution environments and suggest new avenues for improving crop resilience and mineral use efficiency.</p>\",\"PeriodicalId\":222,\"journal\":{\"name\":\"Plant, Cell & Environment\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant, Cell & Environment\",\"FirstCategoryId\":\"2\",\"ListUrlMain\":\"https://doi.org/10.1111/pce.15475\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant, Cell & Environment","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/pce.15475","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

矿质营养素对植物生长发育和作物产量至关重要。在矿物质缺乏的条件下,植物依靠复杂的信号通路网络来协调它们的分子、生理和形态反应。最近的研究表明,长距离信号通路在维持矿物质稳态和优化生长方面起着关键作用。这篇综述探讨了矿物质缺乏下长距离信号的复杂机制,强调了其作为根和芽之间通信网络的重要性。植物通过维管组织运输一系列信号分子,包括植物激素、小rna、蛋白质、小肽和可移动mrna,以介导全身反应。维管组织,特别是伴随细胞,是感知和传递矿物质缺乏信号的关键枢纽,导致矿物质吸收的快速变化和根形态的优化。我们强调了关键信号分子在调节矿物质获取和胁迫适应中的作用。分子工具的进步,包括TRAP-Seq、异源嫁接和单细胞RNA测序,最近揭示了长距离信号传导及其调控成分的新方面。这些见解强调了维管介导的通讯在使植物能够驾驭异质矿物分布环境中的重要作用,并为提高作物抗逆性和矿物利用效率提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding Long-Distance Communication Under Mineral Stress: Advances in Vascular Signalling and Molecular Tools for Plant Resilience.

Mineral nutrients are essential for plant growth, development and crop yield. Under mineral deficient conditions, plants rely on a sophisticated network of signalling pathways to coordinate their molecular, physiological, and morphological responses. Recent research has shown that long-distance signalling pathways play a pivotal role in maintaining mineral homeostasis and optimising growth. This review explores the intricate mechanisms of long-distance signalling under mineral deficiencies, emphasising its importance as a communication network between roots and shoots. Through the vascular tissues, plants transport an array of signalling molecules, including phytohormones, small RNAs, proteins, small peptides, and mobile mRNAs, to mediate systemic responses. Vascular tissues, particularly companion cells, are critical hubs for sensing and relaying mineral deficiency signals, leading to rapid changes in mineral uptake and optimised root morphology. We highlight the roles of key signalling molecules in regulating mineral acquisition and stress adaptation. Advances in molecular tools, including TRAP-Seq, heterografting, and single-cell RNA sequencing, have recently unveiled novel aspects of long-distance signalling and its regulatory components. These insights underscore the essential role of vascular-mediated communication in enabling plants to navigate heterogeneous mineral distribution environments and suggest new avenues for improving crop resilience and mineral use efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant, Cell & Environment
Plant, Cell & Environment 生物-植物科学
CiteScore
13.30
自引率
4.10%
发文量
253
审稿时长
1.8 months
期刊介绍: Plant, Cell & Environment is a premier plant science journal, offering valuable insights into plant responses to their environment. Committed to publishing high-quality theoretical and experimental research, the journal covers a broad spectrum of factors, spanning from molecular to community levels. Researchers exploring various aspects of plant biology, physiology, and ecology contribute to the journal's comprehensive understanding of plant-environment interactions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信