Chen Sun, Chang-Qing Jing, Dong-Yang Li, Meng-Han Dong, Ming-Xue An, Zhong-Hui Zhang, Cheng-Yang Yue, Honghan Fei, Xiao-Wu Lei
{"title":"低维铅钙钛矿卤化物空位原位调谐实现多重可调发光性能。","authors":"Chen Sun, Chang-Qing Jing, Dong-Yang Li, Meng-Han Dong, Ming-Xue An, Zhong-Hui Zhang, Cheng-Yang Yue, Honghan Fei, Xiao-Wu Lei","doi":"10.1002/advs.202412459","DOIUrl":null,"url":null,"abstract":"<p>Surface defects play a crucial role in the photophysical properties and optoelectronic applications of perovskite materials. Although luminescent efficiency is improved through post-synthetic defect passivation, comprehensive optimization of photoluminescent performance via defect chemistry remains a significant challenge. Herein, a successful defect engineering strategy is demonstrated toward 0D perovskite of [DADPA]PbBr<sub>5</sub> (DADPA = diaminodipropylamine) single crystal to achieve multiple adjustable luminescent properties. Through fine-tuning the crystallization environment to diminish Br vacancy (<i>V</i><sub>Br</sub>), [DADPA]PbBr<sub>5</sub> displays gradually evolutionary luminescence range from broadband blue-white to narrow green light emissions, with continuously adjustable dominant wavelengths (445–535 nm) and linewidths (134–27 nm). Meanwhile, the quantum yields increase significantly from 3.7% to 80.8%, and lifetime extends from 5.4 to 57.7 ns. This is the pioneering discovery in perovskite chemistry for simultaneous modification of multi-dimensional luminescent performances. Combined spectroscopic investigations and first-principles calculations indicate that the reducing <i>V</i><sub>Br</sub> significantly narrows the bandgap and inhibits nonradiative recombination, which attenuates interband trap-state-associated broadband emission and facilitates the formation of bound exciton for enhanced emission efficiency. More remarkably, this universal strategy can be extended to other perovskite systems with similar luminescent adjustability, paving the way for applications of diverse perovskites with improved optoelectronic performance.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 18","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202412459","citationCount":"0","resultStr":"{\"title\":\"In Situ Halide Vacancy Tuning of Low-Dimensional Lead Perovskites to Realize Multiple Adjustable Luminescence Performance\",\"authors\":\"Chen Sun, Chang-Qing Jing, Dong-Yang Li, Meng-Han Dong, Ming-Xue An, Zhong-Hui Zhang, Cheng-Yang Yue, Honghan Fei, Xiao-Wu Lei\",\"doi\":\"10.1002/advs.202412459\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Surface defects play a crucial role in the photophysical properties and optoelectronic applications of perovskite materials. Although luminescent efficiency is improved through post-synthetic defect passivation, comprehensive optimization of photoluminescent performance via defect chemistry remains a significant challenge. Herein, a successful defect engineering strategy is demonstrated toward 0D perovskite of [DADPA]PbBr<sub>5</sub> (DADPA = diaminodipropylamine) single crystal to achieve multiple adjustable luminescent properties. Through fine-tuning the crystallization environment to diminish Br vacancy (<i>V</i><sub>Br</sub>), [DADPA]PbBr<sub>5</sub> displays gradually evolutionary luminescence range from broadband blue-white to narrow green light emissions, with continuously adjustable dominant wavelengths (445–535 nm) and linewidths (134–27 nm). Meanwhile, the quantum yields increase significantly from 3.7% to 80.8%, and lifetime extends from 5.4 to 57.7 ns. This is the pioneering discovery in perovskite chemistry for simultaneous modification of multi-dimensional luminescent performances. Combined spectroscopic investigations and first-principles calculations indicate that the reducing <i>V</i><sub>Br</sub> significantly narrows the bandgap and inhibits nonradiative recombination, which attenuates interband trap-state-associated broadband emission and facilitates the formation of bound exciton for enhanced emission efficiency. More remarkably, this universal strategy can be extended to other perovskite systems with similar luminescent adjustability, paving the way for applications of diverse perovskites with improved optoelectronic performance.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 18\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202412459\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202412459\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/advs.202412459","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
In Situ Halide Vacancy Tuning of Low-Dimensional Lead Perovskites to Realize Multiple Adjustable Luminescence Performance
Surface defects play a crucial role in the photophysical properties and optoelectronic applications of perovskite materials. Although luminescent efficiency is improved through post-synthetic defect passivation, comprehensive optimization of photoluminescent performance via defect chemistry remains a significant challenge. Herein, a successful defect engineering strategy is demonstrated toward 0D perovskite of [DADPA]PbBr5 (DADPA = diaminodipropylamine) single crystal to achieve multiple adjustable luminescent properties. Through fine-tuning the crystallization environment to diminish Br vacancy (VBr), [DADPA]PbBr5 displays gradually evolutionary luminescence range from broadband blue-white to narrow green light emissions, with continuously adjustable dominant wavelengths (445–535 nm) and linewidths (134–27 nm). Meanwhile, the quantum yields increase significantly from 3.7% to 80.8%, and lifetime extends from 5.4 to 57.7 ns. This is the pioneering discovery in perovskite chemistry for simultaneous modification of multi-dimensional luminescent performances. Combined spectroscopic investigations and first-principles calculations indicate that the reducing VBr significantly narrows the bandgap and inhibits nonradiative recombination, which attenuates interband trap-state-associated broadband emission and facilitates the formation of bound exciton for enhanced emission efficiency. More remarkably, this universal strategy can be extended to other perovskite systems with similar luminescent adjustability, paving the way for applications of diverse perovskites with improved optoelectronic performance.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.