Meilong Wang, Linsong Li, Zhentao Liu, Fuzhong Wu, Huixin Jin, Yi Wang, Siyu Cai
{"title":"多组分Co2O3@CoMo2S4核壳结构作为循环稳定超级电容器的无粘结剂电极。","authors":"Meilong Wang, Linsong Li, Zhentao Liu, Fuzhong Wu, Huixin Jin, Yi Wang, Siyu Cai","doi":"10.1021/acsomega.4c05172","DOIUrl":null,"url":null,"abstract":"<p><p>Transitional bimetallic sulfides have garnered significant interest due to their versatile redox reactions, strong electrochemical activity, and cost-effectiveness. However, their low energy density and poor rate performance have hindered their use in energy storage systems. To overcome these challenges, we have developed a Co<sub>2</sub>O<sub>3</sub>@CoMo<sub>2</sub>S<sub>4</sub> core-shell structure using a strategic design approach, serving as a conductive framework for supercapacitors. The innovative Co<sub>2</sub>O<sub>3</sub>@CoMo<sub>2</sub>S<sub>4</sub> core-shell structure exhibits exceptional performance, achieving a specific capacitance of 4951.8 F g<sup>-1</sup> at 1 A g<sup>-1</sup> and retaining 90.85% cyclic stability after 5500 cycles, outperforming most reported transitional bimetallic sulfides. The Co<sub>2</sub>O<sub>3</sub>@CoMo<sub>2</sub>S<sub>4</sub>//AC supercapacitor achieves an energy density of 41.66 Wh kg<sup>-1</sup> and a power density of 0.35 kW kg<sup>-1</sup>. Our research paves the way for the development of transitional bimetallic sulfides with core-shell structures that offer superior performance in supercapacitor applications, providing valuable insights for future advancements in the field.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 9","pages":"8901-8910"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904649/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multicomponent Co<sub>2</sub>O<sub>3</sub>@CoMo<sub>2</sub>S<sub>4</sub> Core-Shell Structures as a Binder-Free Electrode for Cycling Stability Supercapacitors.\",\"authors\":\"Meilong Wang, Linsong Li, Zhentao Liu, Fuzhong Wu, Huixin Jin, Yi Wang, Siyu Cai\",\"doi\":\"10.1021/acsomega.4c05172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transitional bimetallic sulfides have garnered significant interest due to their versatile redox reactions, strong electrochemical activity, and cost-effectiveness. However, their low energy density and poor rate performance have hindered their use in energy storage systems. To overcome these challenges, we have developed a Co<sub>2</sub>O<sub>3</sub>@CoMo<sub>2</sub>S<sub>4</sub> core-shell structure using a strategic design approach, serving as a conductive framework for supercapacitors. The innovative Co<sub>2</sub>O<sub>3</sub>@CoMo<sub>2</sub>S<sub>4</sub> core-shell structure exhibits exceptional performance, achieving a specific capacitance of 4951.8 F g<sup>-1</sup> at 1 A g<sup>-1</sup> and retaining 90.85% cyclic stability after 5500 cycles, outperforming most reported transitional bimetallic sulfides. The Co<sub>2</sub>O<sub>3</sub>@CoMo<sub>2</sub>S<sub>4</sub>//AC supercapacitor achieves an energy density of 41.66 Wh kg<sup>-1</sup> and a power density of 0.35 kW kg<sup>-1</sup>. Our research paves the way for the development of transitional bimetallic sulfides with core-shell structures that offer superior performance in supercapacitor applications, providing valuable insights for future advancements in the field.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 9\",\"pages\":\"8901-8910\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904649/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c05172\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/11 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c05172","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
过渡双金属硫化物由于其多种氧化还原反应、强电化学活性和成本效益而引起了人们的极大兴趣。然而,它们的低能量密度和较差的速率性能阻碍了它们在储能系统中的应用。为了克服这些挑战,我们使用战略设计方法开发了Co2O3@CoMo2S4核壳结构,作为超级电容器的导电框架。创新的Co2O3@CoMo2S4核壳结构表现出优异的性能,在1 a g-1时达到4951.8 F -1的比电容,在5500次循环后保持90.85%的循环稳定性,优于大多数报道的过渡双金属硫化物。Co2O3@CoMo2S4//交流超级电容器的能量密度为41.66 Wh kg-1,功率密度为0.35 kW kg-1。我们的研究为开发具有核壳结构的过渡双金属硫化物铺平了道路,这些硫化物在超级电容器应用中提供了卓越的性能,为该领域的未来发展提供了有价值的见解。
Multicomponent Co2O3@CoMo2S4 Core-Shell Structures as a Binder-Free Electrode for Cycling Stability Supercapacitors.
Transitional bimetallic sulfides have garnered significant interest due to their versatile redox reactions, strong electrochemical activity, and cost-effectiveness. However, their low energy density and poor rate performance have hindered their use in energy storage systems. To overcome these challenges, we have developed a Co2O3@CoMo2S4 core-shell structure using a strategic design approach, serving as a conductive framework for supercapacitors. The innovative Co2O3@CoMo2S4 core-shell structure exhibits exceptional performance, achieving a specific capacitance of 4951.8 F g-1 at 1 A g-1 and retaining 90.85% cyclic stability after 5500 cycles, outperforming most reported transitional bimetallic sulfides. The Co2O3@CoMo2S4//AC supercapacitor achieves an energy density of 41.66 Wh kg-1 and a power density of 0.35 kW kg-1. Our research paves the way for the development of transitional bimetallic sulfides with core-shell structures that offer superior performance in supercapacitor applications, providing valuable insights for future advancements in the field.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.