Tanos C C França, Michael Maddalena, Imène Kouidmi, Yann Ayotte, Salim T Islam, Steven R LaPlante
{"title":"SI/II Ras口袋:一个曾经“不可摧毁”目标的机会。","authors":"Tanos C C França, Michael Maddalena, Imène Kouidmi, Yann Ayotte, Salim T Islam, Steven R LaPlante","doi":"10.1021/acsomega.4c10493","DOIUrl":null,"url":null,"abstract":"<p><p>Mutations on the Ras-family of small GTPases are among the most common molecular oncogenic drivers, with the HRas isoform being primarily associated with head-and-neck and genito-urinary cancers. Although once considered \"undruggable,\" recent efforts have identified a structurally conserved surface pocket in the Ras family, designated the SI/II pocket, situated near the binding site of the guanidine exchange factor (GEF) SOS1. The SI/II pocket may represent a potential target site for a pan-Ras drug. A crystal structure representing the native state of GDP-bound HRas<sup>G12V</sup> was generated to characterize the topology of the SI/II pocket. This native-state structure was employed, together with the published structure of GppNHp-bound HRas<sup>G12V</sup> in state 1 (PDB ID: 4EFM), as a base for further molecular dynamics simulations exploring the conformational dynamics of the SI/II pocket via four generated synthetic HRas model structures. Our results show that the SI/II pocket is natively inaccessible in GDP-bound HRas yet becomes accessible in state 1 GppNHp-bound HRas systems, an effect that seems to be more evident in the mutated enzyme. This points to the GTP-bound state as a most promising target for Ras inhibitors directed at the SI/II pocket. Occlusion of the SI/II pocket is dictated by the spatial position of the α2 α helix in relation to the protein core, with α2 residue Y71 acting as a \"tyrosine toggle\" capable of restricting the pocket access.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 9","pages":"9463-9473"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904710/pdf/","citationCount":"0","resultStr":"{\"title\":\"SI/II Pocket of Ras: An Opportunity for a Once \\\"Undruggable\\\" Target.\",\"authors\":\"Tanos C C França, Michael Maddalena, Imène Kouidmi, Yann Ayotte, Salim T Islam, Steven R LaPlante\",\"doi\":\"10.1021/acsomega.4c10493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mutations on the Ras-family of small GTPases are among the most common molecular oncogenic drivers, with the HRas isoform being primarily associated with head-and-neck and genito-urinary cancers. Although once considered \\\"undruggable,\\\" recent efforts have identified a structurally conserved surface pocket in the Ras family, designated the SI/II pocket, situated near the binding site of the guanidine exchange factor (GEF) SOS1. The SI/II pocket may represent a potential target site for a pan-Ras drug. A crystal structure representing the native state of GDP-bound HRas<sup>G12V</sup> was generated to characterize the topology of the SI/II pocket. This native-state structure was employed, together with the published structure of GppNHp-bound HRas<sup>G12V</sup> in state 1 (PDB ID: 4EFM), as a base for further molecular dynamics simulations exploring the conformational dynamics of the SI/II pocket via four generated synthetic HRas model structures. Our results show that the SI/II pocket is natively inaccessible in GDP-bound HRas yet becomes accessible in state 1 GppNHp-bound HRas systems, an effect that seems to be more evident in the mutated enzyme. This points to the GTP-bound state as a most promising target for Ras inhibitors directed at the SI/II pocket. Occlusion of the SI/II pocket is dictated by the spatial position of the α2 α helix in relation to the protein core, with α2 residue Y71 acting as a \\\"tyrosine toggle\\\" capable of restricting the pocket access.</p>\",\"PeriodicalId\":22,\"journal\":{\"name\":\"ACS Omega\",\"volume\":\"10 9\",\"pages\":\"9463-9473\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11904710/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Omega\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acsomega.4c10493\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/11 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acsomega.4c10493","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/11 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
SI/II Pocket of Ras: An Opportunity for a Once "Undruggable" Target.
Mutations on the Ras-family of small GTPases are among the most common molecular oncogenic drivers, with the HRas isoform being primarily associated with head-and-neck and genito-urinary cancers. Although once considered "undruggable," recent efforts have identified a structurally conserved surface pocket in the Ras family, designated the SI/II pocket, situated near the binding site of the guanidine exchange factor (GEF) SOS1. The SI/II pocket may represent a potential target site for a pan-Ras drug. A crystal structure representing the native state of GDP-bound HRasG12V was generated to characterize the topology of the SI/II pocket. This native-state structure was employed, together with the published structure of GppNHp-bound HRasG12V in state 1 (PDB ID: 4EFM), as a base for further molecular dynamics simulations exploring the conformational dynamics of the SI/II pocket via four generated synthetic HRas model structures. Our results show that the SI/II pocket is natively inaccessible in GDP-bound HRas yet becomes accessible in state 1 GppNHp-bound HRas systems, an effect that seems to be more evident in the mutated enzyme. This points to the GTP-bound state as a most promising target for Ras inhibitors directed at the SI/II pocket. Occlusion of the SI/II pocket is dictated by the spatial position of the α2 α helix in relation to the protein core, with α2 residue Y71 acting as a "tyrosine toggle" capable of restricting the pocket access.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.