Jianxi Liu, Mingcong Huang, Kang Hu, Nannan Xia, Zeqiang Linli
{"title":"衰老过程中白质介导的灰质网络功能改变","authors":"Jianxi Liu, Mingcong Huang, Kang Hu, Nannan Xia, Zeqiang Linli","doi":"10.1111/jon.70036","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background and Purpose</h3>\n \n <p>Extensive research has been carried out to investigate changes in various gray matter (GM) regions during the aging process using resting-state functional MRI. However, the impact of aging on the functional connectivity (FC) between white matter (WM) and GM, particularly white matter–gray matter functional connectivity (WM–GM FC), remains largely unknown. This study proposes a novel method for constructing functional networks that integrate both WM and GM.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>By utilizing data from a lifespan cohort of 439 healthy adults, we devised a covariance-based approach to establish a gray matter–white matter–gray matter (GM–WM–GM) mediated network. The FC between GM and WM was quantified using the Johns Hopkins University International Consortium of Brain Mapping-Diffusion Tensor Imaging-81 WM atlas in combination with the Automated Anatomical Labeling atlas. First, the WM–GM FC was calculated via Pearson correlation coefficients between WM and GM regions, followed by the standardization of the resulting matrix. The GM–WM–GM FC was then constructed using the covariance matrix. Furthermore, topological properties were calculated for GM–WM–GM networks. Finally, the age effect of GM–WM–GM and its topology were explored.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Our findings reveal a significant age-related decline in intranetwork connectivity and global network efficiency, while internetwork connectivity followed an inverted U-shaped pattern, suggesting functional dedifferentiation in the aging brain. Despite relatively stable local efficiency, the observed reduction in global efficiency indicates a weakening of long-range neural connections. Additionally, a decrease in network modularity further supports this trend.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>These results offer novel insights into the age-associated reorganization of brain networks, enhancing our understanding of the neural mechanisms underlying normal aging.</p>\n </section>\n </div>","PeriodicalId":16399,"journal":{"name":"Journal of Neuroimaging","volume":"35 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Alterations in Gray Matter Networks Mediated by White Matter During the Aging Process\",\"authors\":\"Jianxi Liu, Mingcong Huang, Kang Hu, Nannan Xia, Zeqiang Linli\",\"doi\":\"10.1111/jon.70036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background and Purpose</h3>\\n \\n <p>Extensive research has been carried out to investigate changes in various gray matter (GM) regions during the aging process using resting-state functional MRI. However, the impact of aging on the functional connectivity (FC) between white matter (WM) and GM, particularly white matter–gray matter functional connectivity (WM–GM FC), remains largely unknown. This study proposes a novel method for constructing functional networks that integrate both WM and GM.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>By utilizing data from a lifespan cohort of 439 healthy adults, we devised a covariance-based approach to establish a gray matter–white matter–gray matter (GM–WM–GM) mediated network. The FC between GM and WM was quantified using the Johns Hopkins University International Consortium of Brain Mapping-Diffusion Tensor Imaging-81 WM atlas in combination with the Automated Anatomical Labeling atlas. First, the WM–GM FC was calculated via Pearson correlation coefficients between WM and GM regions, followed by the standardization of the resulting matrix. The GM–WM–GM FC was then constructed using the covariance matrix. Furthermore, topological properties were calculated for GM–WM–GM networks. Finally, the age effect of GM–WM–GM and its topology were explored.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Our findings reveal a significant age-related decline in intranetwork connectivity and global network efficiency, while internetwork connectivity followed an inverted U-shaped pattern, suggesting functional dedifferentiation in the aging brain. Despite relatively stable local efficiency, the observed reduction in global efficiency indicates a weakening of long-range neural connections. Additionally, a decrease in network modularity further supports this trend.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>These results offer novel insights into the age-associated reorganization of brain networks, enhancing our understanding of the neural mechanisms underlying normal aging.</p>\\n </section>\\n </div>\",\"PeriodicalId\":16399,\"journal\":{\"name\":\"Journal of Neuroimaging\",\"volume\":\"35 2\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroimaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jon.70036\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jon.70036","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Functional Alterations in Gray Matter Networks Mediated by White Matter During the Aging Process
Background and Purpose
Extensive research has been carried out to investigate changes in various gray matter (GM) regions during the aging process using resting-state functional MRI. However, the impact of aging on the functional connectivity (FC) between white matter (WM) and GM, particularly white matter–gray matter functional connectivity (WM–GM FC), remains largely unknown. This study proposes a novel method for constructing functional networks that integrate both WM and GM.
Methods
By utilizing data from a lifespan cohort of 439 healthy adults, we devised a covariance-based approach to establish a gray matter–white matter–gray matter (GM–WM–GM) mediated network. The FC between GM and WM was quantified using the Johns Hopkins University International Consortium of Brain Mapping-Diffusion Tensor Imaging-81 WM atlas in combination with the Automated Anatomical Labeling atlas. First, the WM–GM FC was calculated via Pearson correlation coefficients between WM and GM regions, followed by the standardization of the resulting matrix. The GM–WM–GM FC was then constructed using the covariance matrix. Furthermore, topological properties were calculated for GM–WM–GM networks. Finally, the age effect of GM–WM–GM and its topology were explored.
Results
Our findings reveal a significant age-related decline in intranetwork connectivity and global network efficiency, while internetwork connectivity followed an inverted U-shaped pattern, suggesting functional dedifferentiation in the aging brain. Despite relatively stable local efficiency, the observed reduction in global efficiency indicates a weakening of long-range neural connections. Additionally, a decrease in network modularity further supports this trend.
Conclusion
These results offer novel insights into the age-associated reorganization of brain networks, enhancing our understanding of the neural mechanisms underlying normal aging.
期刊介绍:
Start reading the Journal of Neuroimaging to learn the latest neurological imaging techniques. The peer-reviewed research is written in a practical clinical context, giving you the information you need on:
MRI
CT
Carotid Ultrasound and TCD
SPECT
PET
Endovascular Surgical Neuroradiology
Functional MRI
Xenon CT
and other new and upcoming neuroscientific modalities.The Journal of Neuroimaging addresses the full spectrum of human nervous system disease, including stroke, neoplasia, degenerating and demyelinating disease, epilepsy, tumors, lesions, infectious disease, cerebral vascular arterial diseases, toxic-metabolic disease, psychoses, dementias, heredo-familial disease, and trauma.Offering original research, review articles, case reports, neuroimaging CPCs, and evaluations of instruments and technology relevant to the nervous system, the Journal of Neuroimaging focuses on useful clinical developments and applications, tested techniques and interpretations, patient care, diagnostics, and therapeutics. Start reading today!