{"title":"一种超快速沉降和低面积位同步器架构","authors":"Amitava Ghosh, Anindya Sundar Dhar","doi":"10.1007/s10470-025-02364-6","DOIUrl":null,"url":null,"abstract":"<div><p>The paper presents the architecture design of a bit synchronizer suited for wireless sensor node applications. It detects a 0–1 transition sent from transmitter that subsequently triggers a counter clocked by a reference. The counter counts a certain number of reference cycles and generates a strobe signal that is used to sample the demodulated waveform at the maximum signal to noise ratio (SNR) instant. Because of the position of the maximum SNR point, there is a latency in the strobe signal. This latency can be measured off-chip and on-chip. Off-chip solution entails observing a repetitive 0–1 pattern sent from the transmitter, and the reference clock post fabrication in an oscilloscope in test lab and writing the latency in terms of reference cycle counts into the chip. On-chip solution uses samplers to sample the demodulated waveform at multiple instants and finds the time where the maximum sampled value occurs. Algorithm was designed first from which the architecture was generated. For the off-chip method, circuit design followed by layout was also performed. The bit synchronizer requires just two bits (for on-chip solution three bits are required) to align with the optimum sampling instant which is very fast compared to existing literature and hence has ultra-fast settling capability. The circuit requires 2364 transistors and the area occupied is 0.069mm<sup>2</sup>. Power consumption is also low being 7.26 µW while bit error ratio less than 10<sup>−3</sup> was achieved for different parameter settings. The receiver design has been targeted for implant telemetry in the 402-405 MHz frequency band.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"123 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ultra-fast settling and low area bit synchronizer architecture\",\"authors\":\"Amitava Ghosh, Anindya Sundar Dhar\",\"doi\":\"10.1007/s10470-025-02364-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper presents the architecture design of a bit synchronizer suited for wireless sensor node applications. It detects a 0–1 transition sent from transmitter that subsequently triggers a counter clocked by a reference. The counter counts a certain number of reference cycles and generates a strobe signal that is used to sample the demodulated waveform at the maximum signal to noise ratio (SNR) instant. Because of the position of the maximum SNR point, there is a latency in the strobe signal. This latency can be measured off-chip and on-chip. Off-chip solution entails observing a repetitive 0–1 pattern sent from the transmitter, and the reference clock post fabrication in an oscilloscope in test lab and writing the latency in terms of reference cycle counts into the chip. On-chip solution uses samplers to sample the demodulated waveform at multiple instants and finds the time where the maximum sampled value occurs. Algorithm was designed first from which the architecture was generated. For the off-chip method, circuit design followed by layout was also performed. The bit synchronizer requires just two bits (for on-chip solution three bits are required) to align with the optimum sampling instant which is very fast compared to existing literature and hence has ultra-fast settling capability. The circuit requires 2364 transistors and the area occupied is 0.069mm<sup>2</sup>. Power consumption is also low being 7.26 µW while bit error ratio less than 10<sup>−3</sup> was achieved for different parameter settings. The receiver design has been targeted for implant telemetry in the 402-405 MHz frequency band.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"123 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-025-02364-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02364-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
An ultra-fast settling and low area bit synchronizer architecture
The paper presents the architecture design of a bit synchronizer suited for wireless sensor node applications. It detects a 0–1 transition sent from transmitter that subsequently triggers a counter clocked by a reference. The counter counts a certain number of reference cycles and generates a strobe signal that is used to sample the demodulated waveform at the maximum signal to noise ratio (SNR) instant. Because of the position of the maximum SNR point, there is a latency in the strobe signal. This latency can be measured off-chip and on-chip. Off-chip solution entails observing a repetitive 0–1 pattern sent from the transmitter, and the reference clock post fabrication in an oscilloscope in test lab and writing the latency in terms of reference cycle counts into the chip. On-chip solution uses samplers to sample the demodulated waveform at multiple instants and finds the time where the maximum sampled value occurs. Algorithm was designed first from which the architecture was generated. For the off-chip method, circuit design followed by layout was also performed. The bit synchronizer requires just two bits (for on-chip solution three bits are required) to align with the optimum sampling instant which is very fast compared to existing literature and hence has ultra-fast settling capability. The circuit requires 2364 transistors and the area occupied is 0.069mm2. Power consumption is also low being 7.26 µW while bit error ratio less than 10−3 was achieved for different parameter settings. The receiver design has been targeted for implant telemetry in the 402-405 MHz frequency band.
期刊介绍:
Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today.
A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.