基于最小化相互关联函数的有效变步长盲降噪算法

IF 1.2 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Redha Bendoumia
{"title":"基于最小化相互关联函数的有效变步长盲降噪算法","authors":"Redha Bendoumia","doi":"10.1007/s10470-025-02335-x","DOIUrl":null,"url":null,"abstract":"<div><p>Recent advancements in adaptive noise signal reduction have utilized 2-microphones adaptive algorithms. Specifically, the normalized form of least-mean-square algorithm (NLMS) with fixed-step-size parameters (FS) has been combined with direct-and-recursive structures of source separation. Compared to conventional one-microphone methods, these combinations provide superior speech quality. However, the main limitation of these 2-microphones adapting algorithms (Direct combination: Forward NLMS and Recursive combination: Backward NLMS) lies in their poor steady state regime with large FS value, while small step-sizes values result a slow speed of convergence. To address these issues, we propose a new variable step-size (VS) approach in this study, based on minimizing the intercorrelation function in the time domain for the basic FNLMS and BNLMS algorithms. Our approach is proposed exactly to determine an optimal value of VS parameters by minimizing the intercorrelation between the enhanced signal and the noisy microphone signals. These methods improve steady state values and convergence speed at the same time. The proposed 2-microphones adapting algorithms were evaluated through simulations conducted in high-noise environments, using the system of mismatch criterion and estimation of output segmental signal-to-noise ratio ones. The comparative simulations results confirmed that our algorithms outperform FS algorithms in terms of steady state values and convergence speed.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"123 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind 2-microphone acoustic noise reduction algorithms using efficient variable step-size adapted by minimizing the intercorrelation function\",\"authors\":\"Redha Bendoumia\",\"doi\":\"10.1007/s10470-025-02335-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent advancements in adaptive noise signal reduction have utilized 2-microphones adaptive algorithms. Specifically, the normalized form of least-mean-square algorithm (NLMS) with fixed-step-size parameters (FS) has been combined with direct-and-recursive structures of source separation. Compared to conventional one-microphone methods, these combinations provide superior speech quality. However, the main limitation of these 2-microphones adapting algorithms (Direct combination: Forward NLMS and Recursive combination: Backward NLMS) lies in their poor steady state regime with large FS value, while small step-sizes values result a slow speed of convergence. To address these issues, we propose a new variable step-size (VS) approach in this study, based on minimizing the intercorrelation function in the time domain for the basic FNLMS and BNLMS algorithms. Our approach is proposed exactly to determine an optimal value of VS parameters by minimizing the intercorrelation between the enhanced signal and the noisy microphone signals. These methods improve steady state values and convergence speed at the same time. The proposed 2-microphones adapting algorithms were evaluated through simulations conducted in high-noise environments, using the system of mismatch criterion and estimation of output segmental signal-to-noise ratio ones. The comparative simulations results confirmed that our algorithms outperform FS algorithms in terms of steady state values and convergence speed.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"123 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-025-02335-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02335-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

自适应噪声信号降低的最新进展利用了双麦克风自适应算法。具体而言,将具有固定步长参数(FS)的归一化最小均方算法(NLMS)与源分离的直接和递归结构相结合。与传统的单麦克风方法相比,这些组合提供了更好的语音质量。然而,这两种双麦克风自适应算法(直接组合:正向NLMS和递归组合:向后NLMS)的主要局限性在于它们的稳态状态较差,FS值较大,而步长较小导致收敛速度较慢。为了解决这些问题,我们在本研究中提出了一种新的可变步长(VS)方法,该方法基于最小化基本FNLMS和BNLMS算法的时域相互关联函数。我们提出的方法正是通过最小化增强信号与噪声麦克风信号之间的相互关系来确定VS参数的最优值。这些方法同时提高了稳态值和收敛速度。采用失配准则和输出段信噪比估计系统,在高噪声环境下进行仿真,对所提出的双麦克风自适应算法进行了评价。对比仿真结果证实了我们的算法在稳态值和收敛速度方面优于FS算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Blind 2-microphone acoustic noise reduction algorithms using efficient variable step-size adapted by minimizing the intercorrelation function

Blind 2-microphone acoustic noise reduction algorithms using efficient variable step-size adapted by minimizing the intercorrelation function

Recent advancements in adaptive noise signal reduction have utilized 2-microphones adaptive algorithms. Specifically, the normalized form of least-mean-square algorithm (NLMS) with fixed-step-size parameters (FS) has been combined with direct-and-recursive structures of source separation. Compared to conventional one-microphone methods, these combinations provide superior speech quality. However, the main limitation of these 2-microphones adapting algorithms (Direct combination: Forward NLMS and Recursive combination: Backward NLMS) lies in their poor steady state regime with large FS value, while small step-sizes values result a slow speed of convergence. To address these issues, we propose a new variable step-size (VS) approach in this study, based on minimizing the intercorrelation function in the time domain for the basic FNLMS and BNLMS algorithms. Our approach is proposed exactly to determine an optimal value of VS parameters by minimizing the intercorrelation between the enhanced signal and the noisy microphone signals. These methods improve steady state values and convergence speed at the same time. The proposed 2-microphones adapting algorithms were evaluated through simulations conducted in high-noise environments, using the system of mismatch criterion and estimation of output segmental signal-to-noise ratio ones. The comparative simulations results confirmed that our algorithms outperform FS algorithms in terms of steady state values and convergence speed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信