一种新型的低功耗,高速进位前置加法器,采用基于4:2压缩单元的11-T混合全加法器模块,适用于低功耗应用

IF 1.2 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Nimai Halder, Biswarup Mukherjee
{"title":"一种新型的低功耗,高速进位前置加法器,采用基于4:2压缩单元的11-T混合全加法器模块,适用于低功耗应用","authors":"Nimai Halder,&nbsp;Biswarup Mukherjee","doi":"10.1007/s10470-025-02361-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, a novel low-power, high-speed hybrid architecture for a 16-bit carry look-ahead adder (CLA) employing 4:2 compressors is proposed. To enhance compressor latency and power efficiency, a new hybrid full adder architecture based on eleven transistors is implemented. The conventional CMOS (CCMOS) architecture of CLAs is hindered by poor latency due to the significant parasitic capacitance presented by higher-order carry generation modules, unlike the ripple carry adder architecture. To mitigate latency issues in the CLA architecture, the design generates odd and even carry bits independently. The proposed 16-bit CLA architecture is simulated using a 45 nm PTM technology model with the Mentor Graphics Tanner EDA tool. Comprehensive simulation-based analyses and comparisons with state-of-the-art methodologies are conducted, focusing on power consumption, delay, and area (transistor count). The proposed design has a power-delay product of 108 femtojoules, which is 53% better than the CCMOS 16-bit CLA architecture.</p></div>","PeriodicalId":7827,"journal":{"name":"Analog Integrated Circuits and Signal Processing","volume":"123 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel low-power, high-speed carry look ahead adder utilizing 11-T hybrid full adder module based 4:2 compressor unit for low-power applications\",\"authors\":\"Nimai Halder,&nbsp;Biswarup Mukherjee\",\"doi\":\"10.1007/s10470-025-02361-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, a novel low-power, high-speed hybrid architecture for a 16-bit carry look-ahead adder (CLA) employing 4:2 compressors is proposed. To enhance compressor latency and power efficiency, a new hybrid full adder architecture based on eleven transistors is implemented. The conventional CMOS (CCMOS) architecture of CLAs is hindered by poor latency due to the significant parasitic capacitance presented by higher-order carry generation modules, unlike the ripple carry adder architecture. To mitigate latency issues in the CLA architecture, the design generates odd and even carry bits independently. The proposed 16-bit CLA architecture is simulated using a 45 nm PTM technology model with the Mentor Graphics Tanner EDA tool. Comprehensive simulation-based analyses and comparisons with state-of-the-art methodologies are conducted, focusing on power consumption, delay, and area (transistor count). The proposed design has a power-delay product of 108 femtojoules, which is 53% better than the CCMOS 16-bit CLA architecture.</p></div>\",\"PeriodicalId\":7827,\"journal\":{\"name\":\"Analog Integrated Circuits and Signal Processing\",\"volume\":\"123 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analog Integrated Circuits and Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10470-025-02361-9\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analog Integrated Circuits and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10470-025-02361-9","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,提出了一种采用4:2压缩器的16位进位前置加法器(CLA)的新型低功耗、高速混合架构。为了提高压缩器延迟和功率效率,实现了一种基于11个晶体管的混合全加法器结构。与纹波进位加法器结构不同,由于高阶进位产生模块具有显著的寄生电容,cla的传统CMOS (CCMOS)结构受到低延迟的阻碍。为了减轻CLA体系结构中的延迟问题,该设计独立地生成奇数和偶数携带位。采用45纳米PTM技术模型和Mentor Graphics Tanner EDA工具对所提出的16位CLA架构进行了仿真。全面的基于仿真的分析和与最先进的方法进行比较,重点是功耗,延迟和面积(晶体管计数)。该设计的功率延迟产品为108飞焦耳,比CCMOS 16位CLA架构高53%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel low-power, high-speed carry look ahead adder utilizing 11-T hybrid full adder module based 4:2 compressor unit for low-power applications

A novel low-power, high-speed carry look ahead adder utilizing 11-T hybrid full adder module based 4:2 compressor unit for low-power applications

In this study, a novel low-power, high-speed hybrid architecture for a 16-bit carry look-ahead adder (CLA) employing 4:2 compressors is proposed. To enhance compressor latency and power efficiency, a new hybrid full adder architecture based on eleven transistors is implemented. The conventional CMOS (CCMOS) architecture of CLAs is hindered by poor latency due to the significant parasitic capacitance presented by higher-order carry generation modules, unlike the ripple carry adder architecture. To mitigate latency issues in the CLA architecture, the design generates odd and even carry bits independently. The proposed 16-bit CLA architecture is simulated using a 45 nm PTM technology model with the Mentor Graphics Tanner EDA tool. Comprehensive simulation-based analyses and comparisons with state-of-the-art methodologies are conducted, focusing on power consumption, delay, and area (transistor count). The proposed design has a power-delay product of 108 femtojoules, which is 53% better than the CCMOS 16-bit CLA architecture.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analog Integrated Circuits and Signal Processing
Analog Integrated Circuits and Signal Processing 工程技术-工程:电子与电气
CiteScore
0.30
自引率
7.10%
发文量
141
审稿时长
7.3 months
期刊介绍: Analog Integrated Circuits and Signal Processing is an archival peer reviewed journal dedicated to the design and application of analog, radio frequency (RF), and mixed signal integrated circuits (ICs) as well as signal processing circuits and systems. It features both new research results and tutorial views and reflects the large volume of cutting-edge research activity in the worldwide field today. A partial list of topics includes analog and mixed signal interface circuits and systems; analog and RFIC design; data converters; active-RC, switched-capacitor, and continuous-time integrated filters; mixed analog/digital VLSI systems; wireless radio transceivers; clock and data recovery circuits; and high speed optoelectronic circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信