氧化锌纳米颗粒的合成及其在潜在指纹检测中的潜在应用

IF 3.6 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Betty Flores, Maribel Guzman, Rolf Grieseler, Aransselly Quiroz, Loic Malet, Stephane Godet
{"title":"氧化锌纳米颗粒的合成及其在潜在指纹检测中的潜在应用","authors":"Betty Flores,&nbsp;Maribel Guzman,&nbsp;Rolf Grieseler,&nbsp;Aransselly Quiroz,&nbsp;Loic Malet,&nbsp;Stephane Godet","doi":"10.1007/s10876-025-02770-w","DOIUrl":null,"url":null,"abstract":"<div><p>Zinc oxide in nanometric dimensions, thanks to its optical properties, is an oxide of great interest for its potential use as a revealing agent for latent fingerprints. In this article we present the synthesis and characterization of ZnO nanoparticles obtained by two methods and it uses in revealing of latent fingerprints on non-porous surfaces. The nanoparticles synthetized present an atomic Zn:O ratio of 0.99 and 1.15 when precipitation and combustion in solution method were used, respectively. Both samples show a hexagonal arrangement (wurtzite) according to the X-ray diffraction and Raman spectra. Raman results show a shift at 439 cm<sup>−1</sup> corresponding to the E<sub>2</sub> (high) mode of the ZnO crystalline hexagonal wurtzite structure. Transmission electron microscopy images show that nanoparticles with smaller average diameters are obtained by chemical precipitation (17.2 ± 10.8 nm) than combustion in solution (73.4 ± 6.0 nm). Samples presented a narrow band gap of 3.69 and 3.59 eV, values higher than that reported for the bulk material (3.37 eV). The photoluminescence spectrum showed a characteristic ultraviolet emission peak around 387 nm and green emissions peaks from ZnO when excitation wavelength of 325 and 488 nm were experiment, respectively. Finally, ZnO nanoparticles were used to reveal latent fingerprints on non-porous surfaces using a 325 nm laser. Fingerprint development is better on black glass surface when using precipitated ZnO. However, Fingerprints are better observed in aluminum foil when ZnO obtained by combustion in solution is applied. The results show that it is possible to use ZnO nanoparticles obtained by both methods as latent fingerprint revealing agents.</p></div>","PeriodicalId":618,"journal":{"name":"Journal of Cluster Science","volume":"36 2","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10876-025-02770-w.pdf","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Zinc Oxide Nanoparticles and Their Potential Application in the Detection of Latent Fingerprints\",\"authors\":\"Betty Flores,&nbsp;Maribel Guzman,&nbsp;Rolf Grieseler,&nbsp;Aransselly Quiroz,&nbsp;Loic Malet,&nbsp;Stephane Godet\",\"doi\":\"10.1007/s10876-025-02770-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Zinc oxide in nanometric dimensions, thanks to its optical properties, is an oxide of great interest for its potential use as a revealing agent for latent fingerprints. In this article we present the synthesis and characterization of ZnO nanoparticles obtained by two methods and it uses in revealing of latent fingerprints on non-porous surfaces. The nanoparticles synthetized present an atomic Zn:O ratio of 0.99 and 1.15 when precipitation and combustion in solution method were used, respectively. Both samples show a hexagonal arrangement (wurtzite) according to the X-ray diffraction and Raman spectra. Raman results show a shift at 439 cm<sup>−1</sup> corresponding to the E<sub>2</sub> (high) mode of the ZnO crystalline hexagonal wurtzite structure. Transmission electron microscopy images show that nanoparticles with smaller average diameters are obtained by chemical precipitation (17.2 ± 10.8 nm) than combustion in solution (73.4 ± 6.0 nm). Samples presented a narrow band gap of 3.69 and 3.59 eV, values higher than that reported for the bulk material (3.37 eV). The photoluminescence spectrum showed a characteristic ultraviolet emission peak around 387 nm and green emissions peaks from ZnO when excitation wavelength of 325 and 488 nm were experiment, respectively. Finally, ZnO nanoparticles were used to reveal latent fingerprints on non-porous surfaces using a 325 nm laser. Fingerprint development is better on black glass surface when using precipitated ZnO. However, Fingerprints are better observed in aluminum foil when ZnO obtained by combustion in solution is applied. The results show that it is possible to use ZnO nanoparticles obtained by both methods as latent fingerprint revealing agents.</p></div>\",\"PeriodicalId\":618,\"journal\":{\"name\":\"Journal of Cluster Science\",\"volume\":\"36 2\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10876-025-02770-w.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cluster Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10876-025-02770-w\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cluster Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10876-025-02770-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

纳米尺度的氧化锌,由于其光学特性,是一种极具潜力的氧化物,可以作为潜在指纹的显示剂。本文介绍了用两种方法制备的氧化锌纳米颗粒的合成和表征,并将其用于非多孔表面的潜在指纹显示。采用沉淀法和溶液燃烧法制备的纳米粒子的Zn:O原子比分别为0.99和1.15。根据x射线衍射和拉曼光谱,两种样品均呈六角形排列(纤锌矿)。拉曼光谱结果显示,ZnO六方纤锌矿结构在439 cm−1处发生了E2(高)模式的位移。透射电镜显示,化学沉淀法得到的纳米颗粒平均直径(17.2±10.8 nm)小于溶液燃烧法得到的纳米颗粒平均直径(73.4±6.0 nm)。样品的带隙较窄,分别为3.69 eV和3.59 eV,高于大块材料的带隙(3.37 eV)。在激发波长为325 nm和488 nm时,ZnO的光致发光光谱分别在387 nm附近和387 nm处有一个特征紫外发射峰和绿色发射峰。最后,利用ZnO纳米粒子利用325 nm激光在非多孔表面上显示潜在指纹。用沉淀氧化锌在黑色玻璃表面的指纹显影效果较好。而用溶液中燃烧得到的氧化锌在铝箔上可以更好地观察到指纹。结果表明,两种方法制备的ZnO纳米颗粒均可作为指纹的潜在显示剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesis of Zinc Oxide Nanoparticles and Their Potential Application in the Detection of Latent Fingerprints

Zinc oxide in nanometric dimensions, thanks to its optical properties, is an oxide of great interest for its potential use as a revealing agent for latent fingerprints. In this article we present the synthesis and characterization of ZnO nanoparticles obtained by two methods and it uses in revealing of latent fingerprints on non-porous surfaces. The nanoparticles synthetized present an atomic Zn:O ratio of 0.99 and 1.15 when precipitation and combustion in solution method were used, respectively. Both samples show a hexagonal arrangement (wurtzite) according to the X-ray diffraction and Raman spectra. Raman results show a shift at 439 cm−1 corresponding to the E2 (high) mode of the ZnO crystalline hexagonal wurtzite structure. Transmission electron microscopy images show that nanoparticles with smaller average diameters are obtained by chemical precipitation (17.2 ± 10.8 nm) than combustion in solution (73.4 ± 6.0 nm). Samples presented a narrow band gap of 3.69 and 3.59 eV, values higher than that reported for the bulk material (3.37 eV). The photoluminescence spectrum showed a characteristic ultraviolet emission peak around 387 nm and green emissions peaks from ZnO when excitation wavelength of 325 and 488 nm were experiment, respectively. Finally, ZnO nanoparticles were used to reveal latent fingerprints on non-porous surfaces using a 325 nm laser. Fingerprint development is better on black glass surface when using precipitated ZnO. However, Fingerprints are better observed in aluminum foil when ZnO obtained by combustion in solution is applied. The results show that it is possible to use ZnO nanoparticles obtained by both methods as latent fingerprint revealing agents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cluster Science
Journal of Cluster Science 化学-无机化学与核化学
CiteScore
6.70
自引率
0.00%
发文量
166
审稿时长
3 months
期刊介绍: The journal publishes the following types of papers: (a) original and important research; (b) authoritative comprehensive reviews or short overviews of topics of current interest; (c) brief but urgent communications on new significant research; and (d) commentaries intended to foster the exchange of innovative or provocative ideas, and to encourage dialogue, amongst researchers working in different cluster disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信