振幅阻尼噪声下各种相互作用对引力Cat态的影响

IF 1.7 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Ramita Sarkar, Abbas Manan, Muhammad Noman, S. M. Zangi
{"title":"振幅阻尼噪声下各种相互作用对引力Cat态的影响","authors":"Ramita Sarkar,&nbsp;Abbas Manan,&nbsp;Muhammad Noman,&nbsp;S. M. Zangi","doi":"10.1007/s10773-025-05945-3","DOIUrl":null,"url":null,"abstract":"<div><p>In modern quantum information processing, the engineering of quantum states to preserve information and correlations is crucial. We investigate two qubits characterized by gravitational interaction and spin-orbit coupling, assuming a specific separation between ground and excited states that affects the gravitational interaction strength. To enhance state manipulation for quantum information, we also consider exposing the system to an external magnetic field, a Josephson junction, and amplitude damping channel. We demonstrate that reduced magnetic field, temperature, and decoherence lead to higher levels of quantum correlations over longer intervals. Conversely, greater strengths of gravitational interaction, spin-orbit coupling and Josephson energy enhance the quantum correlations of the state. It is crucial to properly adjust the Josephson gate phase angle to achieve the desired levels of quantum correlations. Finally, the gravitational state characterized by various interactions remains a more optimal choice for quantum information than its simplest version, as it provides enhanced control over quantum features.</p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Various Interactions on Gravitational Cat States under Amplitude Damping Noise\",\"authors\":\"Ramita Sarkar,&nbsp;Abbas Manan,&nbsp;Muhammad Noman,&nbsp;S. M. Zangi\",\"doi\":\"10.1007/s10773-025-05945-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In modern quantum information processing, the engineering of quantum states to preserve information and correlations is crucial. We investigate two qubits characterized by gravitational interaction and spin-orbit coupling, assuming a specific separation between ground and excited states that affects the gravitational interaction strength. To enhance state manipulation for quantum information, we also consider exposing the system to an external magnetic field, a Josephson junction, and amplitude damping channel. We demonstrate that reduced magnetic field, temperature, and decoherence lead to higher levels of quantum correlations over longer intervals. Conversely, greater strengths of gravitational interaction, spin-orbit coupling and Josephson energy enhance the quantum correlations of the state. It is crucial to properly adjust the Josephson gate phase angle to achieve the desired levels of quantum correlations. Finally, the gravitational state characterized by various interactions remains a more optimal choice for quantum information than its simplest version, as it provides enhanced control over quantum features.</p></div>\",\"PeriodicalId\":597,\"journal\":{\"name\":\"International Journal of Theoretical Physics\",\"volume\":\"64 4\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Theoretical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10773-025-05945-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05945-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在现代量子信息处理中,量子态的工程来保持信息和相关性是至关重要的。我们研究了两个具有引力相互作用和自旋轨道耦合特征的量子比特,假设基态和激发态之间存在影响引力相互作用强度的特定分离。为了增强量子信息的状态操纵,我们还考虑将系统暴露于外部磁场、约瑟夫森结和振幅阻尼通道中。我们证明,减少磁场,温度和退相干导致更高水平的量子相关在更长的时间间隔。相反,更强的引力相互作用、自旋轨道耦合和约瑟夫森能量增强了态的量子相关性。适当调整约瑟夫森门相位角以达到所需的量子相关水平是至关重要的。最后,以各种相互作用为特征的引力态仍然是量子信息的最佳选择,而不是最简单的版本,因为它提供了对量子特征的增强控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effects of Various Interactions on Gravitational Cat States under Amplitude Damping Noise

In modern quantum information processing, the engineering of quantum states to preserve information and correlations is crucial. We investigate two qubits characterized by gravitational interaction and spin-orbit coupling, assuming a specific separation between ground and excited states that affects the gravitational interaction strength. To enhance state manipulation for quantum information, we also consider exposing the system to an external magnetic field, a Josephson junction, and amplitude damping channel. We demonstrate that reduced magnetic field, temperature, and decoherence lead to higher levels of quantum correlations over longer intervals. Conversely, greater strengths of gravitational interaction, spin-orbit coupling and Josephson energy enhance the quantum correlations of the state. It is crucial to properly adjust the Josephson gate phase angle to achieve the desired levels of quantum correlations. Finally, the gravitational state characterized by various interactions remains a more optimal choice for quantum information than its simplest version, as it provides enhanced control over quantum features.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
21.40%
发文量
258
审稿时长
3.3 months
期刊介绍: International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信