分层联邦ADMM

Seyed Mohammad Azimi-Abarghouyi;Nicola Bastianello;Karl H. Johansson;Viktoria Fodor
{"title":"分层联邦ADMM","authors":"Seyed Mohammad Azimi-Abarghouyi;Nicola Bastianello;Karl H. Johansson;Viktoria Fodor","doi":"10.1109/LNET.2025.3527161","DOIUrl":null,"url":null,"abstract":"In this letter, we depart from the widely-used gradient descent-based hierarchical federated learning (FL) algorithms to develop a novel hierarchical FL framework based on the alternating direction method of multipliers (ADMM), leveraging a network architecture consisting of a single cloud server and multiple edge servers, where each edge server is dedicated to a specific client set. Within this framework, we propose two novel FL algorithms, which both use ADMM in the top layer: one that employs ADMM in the lower layer and another that uses the conventional gradient descent-based approach. The proposed framework enhances privacy, and experiments demonstrate the superiority of the proposed algorithms compared to the conventional algorithms in terms of learning convergence and accuracy. Additionally, gradient descent on the lower layer performs well even if the number of local steps is very limited, while ADMM on both layers lead to better performance otherwise.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"7 1","pages":"11-15"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10833716","citationCount":"0","resultStr":"{\"title\":\"Hierarchical Federated ADMM\",\"authors\":\"Seyed Mohammad Azimi-Abarghouyi;Nicola Bastianello;Karl H. Johansson;Viktoria Fodor\",\"doi\":\"10.1109/LNET.2025.3527161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, we depart from the widely-used gradient descent-based hierarchical federated learning (FL) algorithms to develop a novel hierarchical FL framework based on the alternating direction method of multipliers (ADMM), leveraging a network architecture consisting of a single cloud server and multiple edge servers, where each edge server is dedicated to a specific client set. Within this framework, we propose two novel FL algorithms, which both use ADMM in the top layer: one that employs ADMM in the lower layer and another that uses the conventional gradient descent-based approach. The proposed framework enhances privacy, and experiments demonstrate the superiority of the proposed algorithms compared to the conventional algorithms in terms of learning convergence and accuracy. Additionally, gradient descent on the lower layer performs well even if the number of local steps is very limited, while ADMM on both layers lead to better performance otherwise.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"7 1\",\"pages\":\"11-15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10833716\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10833716/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10833716/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这封信中,我们脱离了广泛使用的基于梯度下降的分层联邦学习(FL)算法,开发了一种基于乘数交替方向方法(ADMM)的新型分层联邦学习框架,利用由单个云服务器和多个边缘服务器组成的网络架构,其中每个边缘服务器专用于特定的客户端集。在这个框架内,我们提出了两种新的FL算法,它们都在顶层使用ADMM:一种在下层使用ADMM,另一种使用传统的基于梯度下降的方法。该框架增强了隐私性,实验证明了该算法在学习收敛性和准确性方面优于传统算法。此外,即使局部步数非常有限,底层的梯度下降也能表现良好,而两层的ADMM在其他情况下也能带来更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical Federated ADMM
In this letter, we depart from the widely-used gradient descent-based hierarchical federated learning (FL) algorithms to develop a novel hierarchical FL framework based on the alternating direction method of multipliers (ADMM), leveraging a network architecture consisting of a single cloud server and multiple edge servers, where each edge server is dedicated to a specific client set. Within this framework, we propose two novel FL algorithms, which both use ADMM in the top layer: one that employs ADMM in the lower layer and another that uses the conventional gradient descent-based approach. The proposed framework enhances privacy, and experiments demonstrate the superiority of the proposed algorithms compared to the conventional algorithms in terms of learning convergence and accuracy. Additionally, gradient descent on the lower layer performs well even if the number of local steps is very limited, while ADMM on both layers lead to better performance otherwise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信