实现流动引导纳米级定位的标准化性能评估

IF 2.4 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Arnau Brosa López;Filip Lemic;Gerard Calvo Bartra;Aina Pérez;Jakob Struye;Jorge Torres Gómez;Esteban Municio;Carmen Delgado;Falko Dressler;Eduard Alarcón;Jeroen Famaey;Sergi Abadal;Xavier Costa Pérez
{"title":"实现流动引导纳米级定位的标准化性能评估","authors":"Arnau Brosa López;Filip Lemic;Gerard Calvo Bartra;Aina Pérez;Jakob Struye;Jorge Torres Gómez;Esteban Municio;Carmen Delgado;Falko Dressler;Eduard Alarcón;Jeroen Famaey;Sergi Abadal;Xavier Costa Pérez","doi":"10.1109/TMBMC.2024.3523428","DOIUrl":null,"url":null,"abstract":"Nanoscale devices with Terahertz (THz) communication capabilities are envisioned to be deployed within human bloodstreams. Such devices will enable fine-grained sensing-based applications for detecting early indications (i.e., biomarkers) of various health conditions, as well as actuation-based ones such as targeted drug delivery. Associating the locations of such events with the events themselves would provide an additional utility for precision diagnostics and treatment. This vision yielded a new class of in-body localization coined under the term “flow-guided nanoscale localization”. Such localization can be piggybacked on THz communication for detecting body regions in which biological events were localized with the traveling time reported by nanodevices flowing with the bloodstream. From decades of research on objective benchmarking of “traditional” indoor localization and its eventual standardization (e.g., ISO/IEC18305:2016), we know that in early stages, the reported performance results were often incomplete (e.g., targeting a subset of relevant performance metrics). Reported results in the literature carried out benchmarking experiments in different evaluation environments and scenarios and utilized inconsistent performance indicators. To avoid such a “lock-in” in flowguided localization, we propose a workflow for standardized performance evaluation of such approaches. The workflow is implemented in the form of an open-source simulation framework that is able to jointly account for the mobility of the nanodevices, in-body THz communication with on-body anchors, and energy-related and other technological constraints (e.g., pulsebased modulation) at the nanodevice level. Accounting for these constraints, the framework can generate raw data to streamline into different flow-guided localization solutions for generating standardized performance benchmarks.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":"11 1","pages":"116-127"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Standardized Performance Evaluation of Flow-Guided Nanoscale Localization\",\"authors\":\"Arnau Brosa López;Filip Lemic;Gerard Calvo Bartra;Aina Pérez;Jakob Struye;Jorge Torres Gómez;Esteban Municio;Carmen Delgado;Falko Dressler;Eduard Alarcón;Jeroen Famaey;Sergi Abadal;Xavier Costa Pérez\",\"doi\":\"10.1109/TMBMC.2024.3523428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoscale devices with Terahertz (THz) communication capabilities are envisioned to be deployed within human bloodstreams. Such devices will enable fine-grained sensing-based applications for detecting early indications (i.e., biomarkers) of various health conditions, as well as actuation-based ones such as targeted drug delivery. Associating the locations of such events with the events themselves would provide an additional utility for precision diagnostics and treatment. This vision yielded a new class of in-body localization coined under the term “flow-guided nanoscale localization”. Such localization can be piggybacked on THz communication for detecting body regions in which biological events were localized with the traveling time reported by nanodevices flowing with the bloodstream. From decades of research on objective benchmarking of “traditional” indoor localization and its eventual standardization (e.g., ISO/IEC18305:2016), we know that in early stages, the reported performance results were often incomplete (e.g., targeting a subset of relevant performance metrics). Reported results in the literature carried out benchmarking experiments in different evaluation environments and scenarios and utilized inconsistent performance indicators. To avoid such a “lock-in” in flowguided localization, we propose a workflow for standardized performance evaluation of such approaches. The workflow is implemented in the form of an open-source simulation framework that is able to jointly account for the mobility of the nanodevices, in-body THz communication with on-body anchors, and energy-related and other technological constraints (e.g., pulsebased modulation) at the nanodevice level. Accounting for these constraints, the framework can generate raw data to streamline into different flow-guided localization solutions for generating standardized performance benchmarks.\",\"PeriodicalId\":36530,\"journal\":{\"name\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"volume\":\"11 1\",\"pages\":\"116-127\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10816730/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10816730/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

具有太赫兹(THz)通信能力的纳米级设备预计将部署在人体血液中。这种设备将实现基于细粒度传感的应用,用于检测各种健康状况的早期适应症(即生物标志物),以及基于驱动的应用,如靶向药物输送。将这些事件的位置与事件本身相关联,将为精确诊断和治疗提供额外的实用程序。这一设想产生了一种新的体内定位方法,称为“流导向纳米级定位”。这种定位可以搭载在太赫兹通信上,用于检测身体区域,其中生物事件与随血流流动的纳米器件所报告的行进时间有关。从几十年来对“传统”室内定位及其最终标准化(例如ISO/IEC18305:2016)的客观基准的研究中,我们知道,在早期阶段,报告的性能结果通常是不完整的(例如,针对相关性能指标的子集)。文献报道的结果在不同的评估环境和场景下进行了对标实验,使用了不一致的绩效指标。为了避免在流导向定位中出现这种“锁定”,我们提出了一个工作流程来对这些方法进行标准化的性能评估。该工作流程以开源模拟框架的形式实现,该框架能够共同考虑纳米器件的移动性、体内与体内锚点的太赫兹通信以及纳米器件级别的能源相关和其他技术限制(例如,基于脉冲的调制)。考虑到这些约束,框架可以生成原始数据,以简化为不同的流导向本地化解决方案,从而生成标准化的性能基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Standardized Performance Evaluation of Flow-Guided Nanoscale Localization
Nanoscale devices with Terahertz (THz) communication capabilities are envisioned to be deployed within human bloodstreams. Such devices will enable fine-grained sensing-based applications for detecting early indications (i.e., biomarkers) of various health conditions, as well as actuation-based ones such as targeted drug delivery. Associating the locations of such events with the events themselves would provide an additional utility for precision diagnostics and treatment. This vision yielded a new class of in-body localization coined under the term “flow-guided nanoscale localization”. Such localization can be piggybacked on THz communication for detecting body regions in which biological events were localized with the traveling time reported by nanodevices flowing with the bloodstream. From decades of research on objective benchmarking of “traditional” indoor localization and its eventual standardization (e.g., ISO/IEC18305:2016), we know that in early stages, the reported performance results were often incomplete (e.g., targeting a subset of relevant performance metrics). Reported results in the literature carried out benchmarking experiments in different evaluation environments and scenarios and utilized inconsistent performance indicators. To avoid such a “lock-in” in flowguided localization, we propose a workflow for standardized performance evaluation of such approaches. The workflow is implemented in the form of an open-source simulation framework that is able to jointly account for the mobility of the nanodevices, in-body THz communication with on-body anchors, and energy-related and other technological constraints (e.g., pulsebased modulation) at the nanodevice level. Accounting for these constraints, the framework can generate raw data to streamline into different flow-guided localization solutions for generating standardized performance benchmarks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.90
自引率
13.60%
发文量
23
期刊介绍: As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信