SAcache:一种非平稳环境下的强自适应在线缓存方案

Zhenghao Sha;Kechao Cai;Jinbei Zhang
{"title":"SAcache:一种非平稳环境下的强自适应在线缓存方案","authors":"Zhenghao Sha;Kechao Cai;Jinbei Zhang","doi":"10.1109/LNET.2024.3516321","DOIUrl":null,"url":null,"abstract":"Online caching at the network edge is becoming increasingly important for alleviating the transmission pressure on backbone networks. Previous studies on online caching policies mainly use the static regret as the performance metric, which relies on a fixed benchmark and lacks the capacity to ensure optimal performance in non-stationary environments. In this letter, we introduce the strongly adaptive regret into online caching and propose a Strongly Adaptive online caching scheme (SAcache). Our SAcache scheme focuses on the performance over time intervals with a length between <inline-formula> <tex-math>$\\tau _{\\min }$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\tau _{\\max }$ </tex-math></inline-formula>, where <inline-formula> <tex-math>$\\tau _{\\min }$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\tau _{\\max }$ </tex-math></inline-formula> are the lower and upper bound on how long the environment changes, respectively. SAcache consists of multiple interval caches operating in a lazy restart mode to make candidate caching decisions, and an aggregated cache that weights the these candidate decisions to determine the final caching decision. We prove that the regret upper bound is sub-linear with respect to the time interval’s length <inline-formula> <tex-math>$\\tau $ </tex-math></inline-formula>, i.e., <inline-formula> <tex-math>$O(\\sqrt {\\tau \\log (\\tau _{\\max }/\\tau _{\\min })})$ </tex-math></inline-formula>. Our experiment results demonstrate that SAcache achieves the highest cache hit ratio and the lowest regret compared to other caching policies in non-stationary environments.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"7 1","pages":"46-50"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SAcache: A Strongly Adaptive Online Caching Scheme for Non-Stationary Environments\",\"authors\":\"Zhenghao Sha;Kechao Cai;Jinbei Zhang\",\"doi\":\"10.1109/LNET.2024.3516321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online caching at the network edge is becoming increasingly important for alleviating the transmission pressure on backbone networks. Previous studies on online caching policies mainly use the static regret as the performance metric, which relies on a fixed benchmark and lacks the capacity to ensure optimal performance in non-stationary environments. In this letter, we introduce the strongly adaptive regret into online caching and propose a Strongly Adaptive online caching scheme (SAcache). Our SAcache scheme focuses on the performance over time intervals with a length between <inline-formula> <tex-math>$\\\\tau _{\\\\min }$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\\\tau _{\\\\max }$ </tex-math></inline-formula>, where <inline-formula> <tex-math>$\\\\tau _{\\\\min }$ </tex-math></inline-formula> and <inline-formula> <tex-math>$\\\\tau _{\\\\max }$ </tex-math></inline-formula> are the lower and upper bound on how long the environment changes, respectively. SAcache consists of multiple interval caches operating in a lazy restart mode to make candidate caching decisions, and an aggregated cache that weights the these candidate decisions to determine the final caching decision. We prove that the regret upper bound is sub-linear with respect to the time interval’s length <inline-formula> <tex-math>$\\\\tau $ </tex-math></inline-formula>, i.e., <inline-formula> <tex-math>$O(\\\\sqrt {\\\\tau \\\\log (\\\\tau _{\\\\max }/\\\\tau _{\\\\min })})$ </tex-math></inline-formula>. Our experiment results demonstrate that SAcache achieves the highest cache hit ratio and the lowest regret compared to other caching policies in non-stationary environments.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"7 1\",\"pages\":\"46-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10794698/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10794698/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络边缘的在线缓存对于缓解骨干网的传输压力变得越来越重要。以往对在线缓存策略的研究主要采用静态后悔作为性能指标,依赖于固定的基准,缺乏在非平稳环境下保证最优性能的能力。在本文中,我们将强自适应后悔引入到在线缓存中,并提出了一个强自适应在线缓存方案(SAcache)。我们的SAcache方案关注的是在$\tau _{\min }$和$\tau _{\max }$之间的时间间隔内的性能,其中$\tau _{\min }$和$\tau _{\max }$分别是环境变化时间的下限和上限。SAcache由多个间隔缓存组成,这些缓存以延迟重启模式运行,以做出候选缓存决策,还有一个聚合缓存,对这些候选决策进行加权,以确定最终的缓存决策。我们证明了遗憾上界对于时间间隔的长度$\tau $是次线性的,即$O(\sqrt {\tau \log (\tau _{\max }/\tau _{\min })})$。实验结果表明,与其他非平稳环境下的缓存策略相比,SAcache具有最高的缓存命中率和最低的缓存后悔率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SAcache: A Strongly Adaptive Online Caching Scheme for Non-Stationary Environments
Online caching at the network edge is becoming increasingly important for alleviating the transmission pressure on backbone networks. Previous studies on online caching policies mainly use the static regret as the performance metric, which relies on a fixed benchmark and lacks the capacity to ensure optimal performance in non-stationary environments. In this letter, we introduce the strongly adaptive regret into online caching and propose a Strongly Adaptive online caching scheme (SAcache). Our SAcache scheme focuses on the performance over time intervals with a length between $\tau _{\min }$ and $\tau _{\max }$ , where $\tau _{\min }$ and $\tau _{\max }$ are the lower and upper bound on how long the environment changes, respectively. SAcache consists of multiple interval caches operating in a lazy restart mode to make candidate caching decisions, and an aggregated cache that weights the these candidate decisions to determine the final caching decision. We prove that the regret upper bound is sub-linear with respect to the time interval’s length $\tau $ , i.e., $O(\sqrt {\tau \log (\tau _{\max }/\tau _{\min })})$ . Our experiment results demonstrate that SAcache achieves the highest cache hit ratio and the lowest regret compared to other caching policies in non-stationary environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信