使用预训练的基于传感器的人类活动识别的半监督学习

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Koki Takenaka;Shunsuke Sakai;Tatsuhito Hasegawa
{"title":"使用预训练的基于传感器的人类活动识别的半监督学习","authors":"Koki Takenaka;Shunsuke Sakai;Tatsuhito Hasegawa","doi":"10.1109/LSENS.2025.3546985","DOIUrl":null,"url":null,"abstract":"In sensor-based human activity recognition (HAR), the annotation cost for sensor data is higher compared to data, such as images. One can use semisupervised learning (semi-SL) to reduce annotation costs. This method lever-ages unlabeled datasets by assigning pseudolabels. How- ever, these methods have the issue of confirmation bias, where performance degrades due to incorrect pseudolabels. Some approaches have attempted to solve this problem by performing multistage pretraining with labeled and unlabeled data, but these methods require significant computational resources. We propose a framework called IDMatchHAR, which performs semi-SL with a single-stage pretraining process on small-scale datasets. We use instance discrimination (ID) during pretraining to learn robust feature representations applied to the subsequent semi-SL task. We verify the effectiveness of the proposed framework using various convolutional neural networks (CNNs), such as VGG and residual network (ResNet), as well as Transformers, on HASC, WISDM, and Pamap2. Our proposed framework significantly reduces the computational cost of pretraining while demonstrating performance comparable to or exceeding that of existing semi-SL methods.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"9 4","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IDMatchHAR: Semi-Supervised Learning for Sensor-Based Human Activity Recognition Using Pretraining\",\"authors\":\"Koki Takenaka;Shunsuke Sakai;Tatsuhito Hasegawa\",\"doi\":\"10.1109/LSENS.2025.3546985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In sensor-based human activity recognition (HAR), the annotation cost for sensor data is higher compared to data, such as images. One can use semisupervised learning (semi-SL) to reduce annotation costs. This method lever-ages unlabeled datasets by assigning pseudolabels. How- ever, these methods have the issue of confirmation bias, where performance degrades due to incorrect pseudolabels. Some approaches have attempted to solve this problem by performing multistage pretraining with labeled and unlabeled data, but these methods require significant computational resources. We propose a framework called IDMatchHAR, which performs semi-SL with a single-stage pretraining process on small-scale datasets. We use instance discrimination (ID) during pretraining to learn robust feature representations applied to the subsequent semi-SL task. We verify the effectiveness of the proposed framework using various convolutional neural networks (CNNs), such as VGG and residual network (ResNet), as well as Transformers, on HASC, WISDM, and Pamap2. Our proposed framework significantly reduces the computational cost of pretraining while demonstrating performance comparable to or exceeding that of existing semi-SL methods.\",\"PeriodicalId\":13014,\"journal\":{\"name\":\"IEEE Sensors Letters\",\"volume\":\"9 4\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10908625/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10908625/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在基于传感器的人类活动识别(HAR)中,传感器数据的标注成本要高于图像等数据。可以使用半监督学习(semi-SL)来降低注释成本。该方法通过分配伪标签来利用未标记的数据集。然而,这些方法有确认偏差的问题,其中性能下降,由于不正确的伪标签。一些方法试图通过使用标记和未标记的数据执行多阶段预训练来解决这个问题,但是这些方法需要大量的计算资源。我们提出了一个名为IDMatchHAR的框架,它通过单阶段预训练过程在小规模数据集上执行半sl。我们在预训练过程中使用实例识别(ID)来学习应用于后续半sl任务的鲁棒特征表示。我们使用各种卷积神经网络(cnn),如VGG和残差网络(ResNet),以及transformer,在HASC, WISDM和Pamap2上验证了所提出框架的有效性。我们提出的框架显着降低了预训练的计算成本,同时展示了与现有半sl方法相当或超过该方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IDMatchHAR: Semi-Supervised Learning for Sensor-Based Human Activity Recognition Using Pretraining
In sensor-based human activity recognition (HAR), the annotation cost for sensor data is higher compared to data, such as images. One can use semisupervised learning (semi-SL) to reduce annotation costs. This method lever-ages unlabeled datasets by assigning pseudolabels. How- ever, these methods have the issue of confirmation bias, where performance degrades due to incorrect pseudolabels. Some approaches have attempted to solve this problem by performing multistage pretraining with labeled and unlabeled data, but these methods require significant computational resources. We propose a framework called IDMatchHAR, which performs semi-SL with a single-stage pretraining process on small-scale datasets. We use instance discrimination (ID) during pretraining to learn robust feature representations applied to the subsequent semi-SL task. We verify the effectiveness of the proposed framework using various convolutional neural networks (CNNs), such as VGG and residual network (ResNet), as well as Transformers, on HASC, WISDM, and Pamap2. Our proposed framework significantly reduces the computational cost of pretraining while demonstrating performance comparable to or exceeding that of existing semi-SL methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信