{"title":"在重叠网格上使用双变量简单迭代法分析振荡拉伸表面上带有磁偶极子的非稳态三元混合纳米流体流动","authors":"Folarin Oluwaseun , Sicelo Goqo , Hiranmoy Mondal , Sibonelo Nzama","doi":"10.1016/j.hybadv.2025.100427","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the unsteady flow of a ternary hybrid nanofluid influenced by a magnetic dipole over an oscillatory stretching surface using the Bivariate Simple Iteration Method (BSIM) on overlapping grids. The unique combination of <span><math><mrow><mi>S</mi><mi>i</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mi>M</mi><mi>o</mi><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, and <em>Cu</em> nanoparticles in engine oil and water enhances heat transfer, relevant to cooling technologies and biomedical applications. The governing equations are transformed into dimensionless form and solved numerically. Results reveal that increasing the magnetic dipole strength reduces velocity near the surface due to Lorentz forces, while higher nanoparticle fractions improve thermal conductivity, increasing the Nusselt number. Water-based nanofluids generally show superior heat transfer, whereas engine oil offers thermal stability. These findings provide insights into the relationship between external magnetic forces and thermal enhancement techniques and recommendations for maximizing ternary hybrid nanofluids in advanced thermal systems.</div></div>","PeriodicalId":100614,"journal":{"name":"Hybrid Advances","volume":"10 ","pages":"Article 100427"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of unsteady ternary hybrid nanofluid flow with magnetic dipole over an oscillatory stretching surface using the Bivariate simple iteration method on overlapping grids\",\"authors\":\"Folarin Oluwaseun , Sicelo Goqo , Hiranmoy Mondal , Sibonelo Nzama\",\"doi\":\"10.1016/j.hybadv.2025.100427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the unsteady flow of a ternary hybrid nanofluid influenced by a magnetic dipole over an oscillatory stretching surface using the Bivariate Simple Iteration Method (BSIM) on overlapping grids. The unique combination of <span><math><mrow><mi>S</mi><mi>i</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, <span><math><mrow><mi>M</mi><mi>o</mi><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, and <em>Cu</em> nanoparticles in engine oil and water enhances heat transfer, relevant to cooling technologies and biomedical applications. The governing equations are transformed into dimensionless form and solved numerically. Results reveal that increasing the magnetic dipole strength reduces velocity near the surface due to Lorentz forces, while higher nanoparticle fractions improve thermal conductivity, increasing the Nusselt number. Water-based nanofluids generally show superior heat transfer, whereas engine oil offers thermal stability. These findings provide insights into the relationship between external magnetic forces and thermal enhancement techniques and recommendations for maximizing ternary hybrid nanofluids in advanced thermal systems.</div></div>\",\"PeriodicalId\":100614,\"journal\":{\"name\":\"Hybrid Advances\",\"volume\":\"10 \",\"pages\":\"Article 100427\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hybrid Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773207X2500051X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hybrid Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773207X2500051X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本研究在重叠网格上使用双变量简单迭代法(BSIM)探讨了受磁偶极子影响的三元混合纳米流体在振荡拉伸表面上的非稳态流动。发动机油和水中 SiO2、MoS2 和 Cu 纳米粒子的独特组合增强了热传递,与冷却技术和生物医学应用相关。将控制方程转换为无量纲形式并进行数值求解。结果表明,由于洛伦兹力的作用,磁偶极子强度的增加会降低表面附近的速度,而纳米粒子比例越高,导热性越好,努塞尔特数也会增加。水基纳米流体通常具有优异的传热性,而机油则具有热稳定性。这些发现深入揭示了外部磁力与热增强技术之间的关系,并为在先进热系统中最大限度地利用三元混合纳米流体提出了建议。
Analysis of unsteady ternary hybrid nanofluid flow with magnetic dipole over an oscillatory stretching surface using the Bivariate simple iteration method on overlapping grids
This study explores the unsteady flow of a ternary hybrid nanofluid influenced by a magnetic dipole over an oscillatory stretching surface using the Bivariate Simple Iteration Method (BSIM) on overlapping grids. The unique combination of , , and Cu nanoparticles in engine oil and water enhances heat transfer, relevant to cooling technologies and biomedical applications. The governing equations are transformed into dimensionless form and solved numerically. Results reveal that increasing the magnetic dipole strength reduces velocity near the surface due to Lorentz forces, while higher nanoparticle fractions improve thermal conductivity, increasing the Nusselt number. Water-based nanofluids generally show superior heat transfer, whereas engine oil offers thermal stability. These findings provide insights into the relationship between external magnetic forces and thermal enhancement techniques and recommendations for maximizing ternary hybrid nanofluids in advanced thermal systems.