Chengyuan Li , Tianyu Zhang , Xusheng Du , Ye Zhang , Haoran Xie
{"title":"建筑设计中不同步骤的生成式AI模型:文献综述","authors":"Chengyuan Li , Tianyu Zhang , Xusheng Du , Ye Zhang , Haoran Xie","doi":"10.1016/j.foar.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>Recent advances in generative artificial intelligence (AI) technologies have been significantly driven by models such as generative adversarial networks (GANs), variational autoencoders (VAEs), and denoising diffusion probabilistic models (DDPMs). Although architects recognize the potential of generative AI in design, personal barriers often restrict their access to the latest technological developments, thereby causing the application of generative AI in architectural design to lag behind. Therefore, it is essential to comprehend the principles and advancements of generative AI models and analyze their relevance in architecture applications. This paper first provides an overview of generative AI technologies, with a focus on probabilistic diffusion models (DDPMs), 3D generative models, and foundation models, highlighting their recent developments and main application scenarios. Then, the paper explains how the abovementioned models could be utilized in architecture. We subdivide the architectural design process into six steps and review related research projects in each step from 2020 to the present. Lastly, this paper discusses potential future directions for applying generative AI in the architectural design steps. This research can help architects quickly understand the development and latest progress of generative AI and contribute to the further development of intelligent architecture.</div></div>","PeriodicalId":51662,"journal":{"name":"Frontiers of Architectural Research","volume":"14 3","pages":"Pages 759-783"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative AI models for different steps in architectural design: A literature review\",\"authors\":\"Chengyuan Li , Tianyu Zhang , Xusheng Du , Ye Zhang , Haoran Xie\",\"doi\":\"10.1016/j.foar.2024.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Recent advances in generative artificial intelligence (AI) technologies have been significantly driven by models such as generative adversarial networks (GANs), variational autoencoders (VAEs), and denoising diffusion probabilistic models (DDPMs). Although architects recognize the potential of generative AI in design, personal barriers often restrict their access to the latest technological developments, thereby causing the application of generative AI in architectural design to lag behind. Therefore, it is essential to comprehend the principles and advancements of generative AI models and analyze their relevance in architecture applications. This paper first provides an overview of generative AI technologies, with a focus on probabilistic diffusion models (DDPMs), 3D generative models, and foundation models, highlighting their recent developments and main application scenarios. Then, the paper explains how the abovementioned models could be utilized in architecture. We subdivide the architectural design process into six steps and review related research projects in each step from 2020 to the present. Lastly, this paper discusses potential future directions for applying generative AI in the architectural design steps. This research can help architects quickly understand the development and latest progress of generative AI and contribute to the further development of intelligent architecture.</div></div>\",\"PeriodicalId\":51662,\"journal\":{\"name\":\"Frontiers of Architectural Research\",\"volume\":\"14 3\",\"pages\":\"Pages 759-783\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Architectural Research\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209526352400147X\",\"RegionNum\":1,\"RegionCategory\":\"艺术学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Architectural Research","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209526352400147X","RegionNum":1,"RegionCategory":"艺术学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHITECTURE","Score":null,"Total":0}
Generative AI models for different steps in architectural design: A literature review
Recent advances in generative artificial intelligence (AI) technologies have been significantly driven by models such as generative adversarial networks (GANs), variational autoencoders (VAEs), and denoising diffusion probabilistic models (DDPMs). Although architects recognize the potential of generative AI in design, personal barriers often restrict their access to the latest technological developments, thereby causing the application of generative AI in architectural design to lag behind. Therefore, it is essential to comprehend the principles and advancements of generative AI models and analyze their relevance in architecture applications. This paper first provides an overview of generative AI technologies, with a focus on probabilistic diffusion models (DDPMs), 3D generative models, and foundation models, highlighting their recent developments and main application scenarios. Then, the paper explains how the abovementioned models could be utilized in architecture. We subdivide the architectural design process into six steps and review related research projects in each step from 2020 to the present. Lastly, this paper discusses potential future directions for applying generative AI in the architectural design steps. This research can help architects quickly understand the development and latest progress of generative AI and contribute to the further development of intelligent architecture.
期刊介绍:
Frontiers of Architectural Research is an international journal that publishes original research papers, review articles, and case studies to promote rapid communication and exchange among scholars, architects, and engineers. This journal introduces and reviews significant and pioneering achievements in the field of architecture research. Subject areas include the primary branches of architecture, such as architectural design and theory, architectural science and technology, urban planning, landscaping architecture, existing building renovation, and architectural heritage conservation. The journal encourages studies based on a rigorous scientific approach and state-of-the-art technology. All published papers reflect original research works and basic theories, models, computing, and design in architecture. High-quality papers addressing the social aspects of architecture are also welcome. This journal is strictly peer-reviewed and accepts only original manuscripts submitted in English.