具有最大边数的无k4平面最小砖

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Jinqiu Zhou, Xing Feng, Weigen Yan
{"title":"具有最大边数的无k4平面最小砖","authors":"Jinqiu Zhou,&nbsp;Xing Feng,&nbsp;Weigen Yan","doi":"10.1016/j.dam.2025.02.044","DOIUrl":null,"url":null,"abstract":"<div><div>A 3-connected graph is a <em>brick</em> if the graph obtained from it by deleting any two distinct vertices has a perfect matching. A brick <span><math><mi>G</mi></math></span> is <em>minimal</em> if <span><math><mrow><mi>G</mi><mo>−</mo><mi>e</mi></mrow></math></span> is not a brick, for every edge <span><math><mi>e</mi></math></span> of <span><math><mi>G</mi></math></span>. Lovász (1983) showed that every brick is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-based or <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span>-based. A brick is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span><em>-free</em> (respectively, <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span><em>-free</em>) if it is not <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-based (respectively, <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span>-based). Kothari and Murty (2016) proved that a planar brick is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free if and only if it has precisely two odd faces and determined the list of all <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span>-free planar bricks. In this paper, we show that the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free planar (minimal) bricks <span><math><mi>G</mi></math></span> have at most <span><math><mrow><mn>2</mn><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mn>3</mn></mrow></math></span> edges. Furthermore, we characterize all the extremal graphs that meet this upper bound.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"370 ","pages":"Pages 92-102"},"PeriodicalIF":1.0000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"K4-free planar minimal bricks with the maximum number of edges\",\"authors\":\"Jinqiu Zhou,&nbsp;Xing Feng,&nbsp;Weigen Yan\",\"doi\":\"10.1016/j.dam.2025.02.044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A 3-connected graph is a <em>brick</em> if the graph obtained from it by deleting any two distinct vertices has a perfect matching. A brick <span><math><mi>G</mi></math></span> is <em>minimal</em> if <span><math><mrow><mi>G</mi><mo>−</mo><mi>e</mi></mrow></math></span> is not a brick, for every edge <span><math><mi>e</mi></math></span> of <span><math><mi>G</mi></math></span>. Lovász (1983) showed that every brick is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-based or <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span>-based. A brick is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span><em>-free</em> (respectively, <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span><em>-free</em>) if it is not <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-based (respectively, <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span>-based). Kothari and Murty (2016) proved that a planar brick is <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free if and only if it has precisely two odd faces and determined the list of all <span><math><msub><mrow><mover><mrow><mi>C</mi></mrow><mo>¯</mo></mover></mrow><mrow><mn>6</mn></mrow></msub></math></span>-free planar bricks. In this paper, we show that the <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-free planar (minimal) bricks <span><math><mi>G</mi></math></span> have at most <span><math><mrow><mn>2</mn><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>−</mo><mn>3</mn></mrow></math></span> edges. Furthermore, we characterize all the extremal graphs that meet this upper bound.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"370 \",\"pages\":\"Pages 92-102\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X25001167\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25001167","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

如果通过删除任意两个不同的顶点而得到的图具有完美匹配,则3连通图为砖。如果G−e不是砖,则砖G是最小的,因为G的每条边e都是最小的。Lovász(1983)表明每个砖都是基于k4或C¯6的。如果砖块不是基于k4(分别基于C¯6),则它是无k4(分别为无C¯6)。Kothari和Murty(2016)证明了平面砖是无k4的当且仅当它恰好有两个奇面,并确定了所有无C¯6平面砖的列表。在本文中,我们证明了无k4平面(最小)砖G最多有2|个V(G)|−3个边。进一步,我们刻画了满足这个上界的所有极值图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K4-free planar minimal bricks with the maximum number of edges
A 3-connected graph is a brick if the graph obtained from it by deleting any two distinct vertices has a perfect matching. A brick G is minimal if Ge is not a brick, for every edge e of G. Lovász (1983) showed that every brick is K4-based or C¯6-based. A brick is K4-free (respectively, C¯6-free) if it is not K4-based (respectively, C¯6-based). Kothari and Murty (2016) proved that a planar brick is K4-free if and only if it has precisely two odd faces and determined the list of all C¯6-free planar bricks. In this paper, we show that the K4-free planar (minimal) bricks G have at most 2|V(G)|3 edges. Furthermore, we characterize all the extremal graphs that meet this upper bound.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信