2×2一阶线性双曲型系统稳定性的一个新的充要条件

IF 2.5 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Ismaïla Balogoun , Jean Auriol , Islam Boussaada , Guilherme Mazanti
{"title":"2×2一阶线性双曲型系统稳定性的一个新的充要条件","authors":"Ismaïla Balogoun ,&nbsp;Jean Auriol ,&nbsp;Islam Boussaada ,&nbsp;Guilherme Mazanti","doi":"10.1016/j.sysconle.2025.106066","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we establish a necessary and sufficient stability condition for a class of two coupled first-order linear hyperbolic partial differential equations. Through a backstepping transform, the problem is reformulated as a stability problem for an integral difference equation, that is, a difference equation with distributed delay. Building upon a Stépán–Hassard argument variation theorem originally designed for time-delay systems of retarded type, we then introduce a theorem that counts the number of unstable roots of our integral difference equation. This leads to the expected necessary and sufficient stability criterion for the system of first-order linear hyperbolic partial differential equations. Finally, we validate our theoretical findings through simulations.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"199 ","pages":"Article 106066"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel necessary and sufficient condition for the stability of 2×2 first-order linear hyperbolic systems\",\"authors\":\"Ismaïla Balogoun ,&nbsp;Jean Auriol ,&nbsp;Islam Boussaada ,&nbsp;Guilherme Mazanti\",\"doi\":\"10.1016/j.sysconle.2025.106066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we establish a necessary and sufficient stability condition for a class of two coupled first-order linear hyperbolic partial differential equations. Through a backstepping transform, the problem is reformulated as a stability problem for an integral difference equation, that is, a difference equation with distributed delay. Building upon a Stépán–Hassard argument variation theorem originally designed for time-delay systems of retarded type, we then introduce a theorem that counts the number of unstable roots of our integral difference equation. This leads to the expected necessary and sufficient stability criterion for the system of first-order linear hyperbolic partial differential equations. Finally, we validate our theoretical findings through simulations.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"199 \",\"pages\":\"Article 106066\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691125000489\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125000489","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了一类一阶线性双曲型偏微分方程稳定性的充分必要条件。通过反推变换,将该问题转化为一个积分差分方程的稳定性问题,即具有分布时滞的差分方程。建立在最初为迟滞型时滞系统设计的Stépán-Hassard参数变分定理的基础上,然后我们引入一个定理来计算我们的积分差分方程的不稳定根的个数。这就得到了一阶线性双曲型偏微分方程系统所期望的充分必要稳定性判据。最后,我们通过仿真验证了我们的理论发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel necessary and sufficient condition for the stability of 2×2 first-order linear hyperbolic systems
In this paper, we establish a necessary and sufficient stability condition for a class of two coupled first-order linear hyperbolic partial differential equations. Through a backstepping transform, the problem is reformulated as a stability problem for an integral difference equation, that is, a difference equation with distributed delay. Building upon a Stépán–Hassard argument variation theorem originally designed for time-delay systems of retarded type, we then introduce a theorem that counts the number of unstable roots of our integral difference equation. This leads to the expected necessary and sufficient stability criterion for the system of first-order linear hyperbolic partial differential equations. Finally, we validate our theoretical findings through simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信