可积截面代数中的多项式生长与泛函演算

IF 1.2 3区 数学 Q1 MATHEMATICS
Felipe I. Flores
{"title":"可积截面代数中的多项式生长与泛函演算","authors":"Felipe I. Flores","doi":"10.1016/j.jmaa.2025.129486","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a locally compact group with polynomial growth of order <em>d</em>, a polynomial weight <em>ν</em> on <span><math><mi>G</mi></math></span> and a Fell bundle <span><math><mi>C</mi><mover><mo>→</mo><mi>q</mi></mover><mi>G</mi></math></span>. We study the Banach <sup>⁎</sup>-algebras <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>ν</mi></mrow></msup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span>, consisting of integrable cross-sections with respect to <span><math><mi>d</mi><mi>x</mi></math></span> and <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi></math></span>, respectively. By exploring new relations between the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norms and the norm of the Hilbert <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-module <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span>, we are able to show that the growth of the self-adjoint, compactly supported, continuous cross-sections is polynomial. More precisely, they satisfy<span><span><span><math><mo>‖</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>t</mi><mi>Φ</mi></mrow></msup><mo>‖</mo><mo>=</mo><mi>O</mi><mo>(</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mtext>as</mtext><mspace></mspace><mo>|</mo><mi>t</mi><mo>|</mo><mo>→</mo><mo>∞</mo><mo>,</mo></math></span></span></span> for values of <em>n</em> that only depend on <em>d</em> and the weight <em>ν</em>. We use this fact to develop a smooth functional calculus for such elements. We also give some sufficient conditions for these algebras to be symmetric. As consequences, we show that these algebras are locally regular, <sup>⁎</sup>-regular and have the Wiener property (when symmetric), among other results. Our results are already new for convolution algebras associated with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-dynamical systems.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129486"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial growth and functional calculus in algebras of integrable cross-sections\",\"authors\":\"Felipe I. Flores\",\"doi\":\"10.1016/j.jmaa.2025.129486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span> be a locally compact group with polynomial growth of order <em>d</em>, a polynomial weight <em>ν</em> on <span><math><mi>G</mi></math></span> and a Fell bundle <span><math><mi>C</mi><mover><mo>→</mo><mi>q</mi></mover><mi>G</mi></math></span>. We study the Banach <sup>⁎</sup>-algebras <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>ν</mi></mrow></msup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span>, consisting of integrable cross-sections with respect to <span><math><mi>d</mi><mi>x</mi></math></span> and <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi></math></span>, respectively. By exploring new relations between the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norms and the norm of the Hilbert <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-module <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span>, we are able to show that the growth of the self-adjoint, compactly supported, continuous cross-sections is polynomial. More precisely, they satisfy<span><span><span><math><mo>‖</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>t</mi><mi>Φ</mi></mrow></msup><mo>‖</mo><mo>=</mo><mi>O</mi><mo>(</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mtext>as</mtext><mspace></mspace><mo>|</mo><mi>t</mi><mo>|</mo><mo>→</mo><mo>∞</mo><mo>,</mo></math></span></span></span> for values of <em>n</em> that only depend on <em>d</em> and the weight <em>ν</em>. We use this fact to develop a smooth functional calculus for such elements. We also give some sufficient conditions for these algebras to be symmetric. As consequences, we show that these algebras are locally regular, <sup>⁎</sup>-regular and have the Wiener property (when symmetric), among other results. Our results are already new for convolution algebras associated with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-dynamical systems.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 2\",\"pages\":\"Article 129486\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25002677\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002677","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设G是一个多项式增长为d阶的局部紧群,G上有一个多项式权ν和一个Fell束C→qG。我们研究了Banach -代数L1(G|C)和L1,ν(G|C),它们分别由关于dx和ν(x)dx的可积截面组成。通过探索Hilbert C _ -模Le2(G|C)的lp -范数和范数之间的新关系,我们能够证明自伴随紧支撑连续截面的增长是多项式的。更准确地说,对于n只依赖于d和权值ν的值,它们满足‖eitΦ‖=O(|t|n),即|t|→∞。我们利用这一事实来发展这类元素的光滑泛函演算。我们还给出了这些代数是对称的几个充分条件。作为结果,我们证明了这些代数是局部正则的,并且具有维纳性质(当对称时),以及其他结果。对于与C -动力系统相关的卷积代数,我们的结果已经是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Polynomial growth and functional calculus in algebras of integrable cross-sections
Let G be a locally compact group with polynomial growth of order d, a polynomial weight ν on G and a Fell bundle CqG. We study the Banach -algebras L1(G|C) and L1,ν(G|C), consisting of integrable cross-sections with respect to dx and ν(x)dx, respectively. By exploring new relations between the Lp-norms and the norm of the Hilbert C-module Le2(G|C), we are able to show that the growth of the self-adjoint, compactly supported, continuous cross-sections is polynomial. More precisely, they satisfyeitΦ=O(|t|n),as|t|, for values of n that only depend on d and the weight ν. We use this fact to develop a smooth functional calculus for such elements. We also give some sufficient conditions for these algebras to be symmetric. As consequences, we show that these algebras are locally regular, -regular and have the Wiener property (when symmetric), among other results. Our results are already new for convolution algebras associated with C-dynamical systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信