{"title":"可积截面代数中的多项式生长与泛函演算","authors":"Felipe I. Flores","doi":"10.1016/j.jmaa.2025.129486","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a locally compact group with polynomial growth of order <em>d</em>, a polynomial weight <em>ν</em> on <span><math><mi>G</mi></math></span> and a Fell bundle <span><math><mi>C</mi><mover><mo>→</mo><mi>q</mi></mover><mi>G</mi></math></span>. We study the Banach <sup>⁎</sup>-algebras <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>ν</mi></mrow></msup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span>, consisting of integrable cross-sections with respect to <span><math><mi>d</mi><mi>x</mi></math></span> and <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi></math></span>, respectively. By exploring new relations between the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norms and the norm of the Hilbert <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-module <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span>, we are able to show that the growth of the self-adjoint, compactly supported, continuous cross-sections is polynomial. More precisely, they satisfy<span><span><span><math><mo>‖</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>t</mi><mi>Φ</mi></mrow></msup><mo>‖</mo><mo>=</mo><mi>O</mi><mo>(</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mtext>as</mtext><mspace></mspace><mo>|</mo><mi>t</mi><mo>|</mo><mo>→</mo><mo>∞</mo><mo>,</mo></math></span></span></span> for values of <em>n</em> that only depend on <em>d</em> and the weight <em>ν</em>. We use this fact to develop a smooth functional calculus for such elements. We also give some sufficient conditions for these algebras to be symmetric. As consequences, we show that these algebras are locally regular, <sup>⁎</sup>-regular and have the Wiener property (when symmetric), among other results. Our results are already new for convolution algebras associated with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-dynamical systems.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 2","pages":"Article 129486"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polynomial growth and functional calculus in algebras of integrable cross-sections\",\"authors\":\"Felipe I. Flores\",\"doi\":\"10.1016/j.jmaa.2025.129486\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>G</mi></math></span> be a locally compact group with polynomial growth of order <em>d</em>, a polynomial weight <em>ν</em> on <span><math><mi>G</mi></math></span> and a Fell bundle <span><math><mi>C</mi><mover><mo>→</mo><mi>q</mi></mover><mi>G</mi></math></span>. We study the Banach <sup>⁎</sup>-algebras <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span> and <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>ν</mi></mrow></msup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span>, consisting of integrable cross-sections with respect to <span><math><mi>d</mi><mi>x</mi></math></span> and <span><math><mi>ν</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>d</mi><mi>x</mi></math></span>, respectively. By exploring new relations between the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norms and the norm of the Hilbert <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-module <span><math><msubsup><mrow><mi>L</mi></mrow><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msubsup><mo>(</mo><mi>G</mi><mspace></mspace><mo>|</mo><mspace></mspace><mi>C</mi><mo>)</mo></math></span>, we are able to show that the growth of the self-adjoint, compactly supported, continuous cross-sections is polynomial. More precisely, they satisfy<span><span><span><math><mo>‖</mo><msup><mrow><mi>e</mi></mrow><mrow><mi>i</mi><mi>t</mi><mi>Φ</mi></mrow></msup><mo>‖</mo><mo>=</mo><mi>O</mi><mo>(</mo><mo>|</mo><mi>t</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>n</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mtext>as</mtext><mspace></mspace><mo>|</mo><mi>t</mi><mo>|</mo><mo>→</mo><mo>∞</mo><mo>,</mo></math></span></span></span> for values of <em>n</em> that only depend on <em>d</em> and the weight <em>ν</em>. We use this fact to develop a smooth functional calculus for such elements. We also give some sufficient conditions for these algebras to be symmetric. As consequences, we show that these algebras are locally regular, <sup>⁎</sup>-regular and have the Wiener property (when symmetric), among other results. Our results are already new for convolution algebras associated with <span><math><msup><mrow><mi>C</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span>-dynamical systems.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"549 2\",\"pages\":\"Article 129486\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X25002677\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002677","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
设G是一个多项式增长为d阶的局部紧群,G上有一个多项式权ν和一个Fell束C→qG。我们研究了Banach -代数L1(G|C)和L1,ν(G|C),它们分别由关于dx和ν(x)dx的可积截面组成。通过探索Hilbert C _ -模Le2(G|C)的lp -范数和范数之间的新关系,我们能够证明自伴随紧支撑连续截面的增长是多项式的。更准确地说,对于n只依赖于d和权值ν的值,它们满足‖eitΦ‖=O(|t|n),即|t|→∞。我们利用这一事实来发展这类元素的光滑泛函演算。我们还给出了这些代数是对称的几个充分条件。作为结果,我们证明了这些代数是局部正则的,并且具有维纳性质(当对称时),以及其他结果。对于与C -动力系统相关的卷积代数,我们的结果已经是新的。
Polynomial growth and functional calculus in algebras of integrable cross-sections
Let be a locally compact group with polynomial growth of order d, a polynomial weight ν on and a Fell bundle . We study the Banach ⁎-algebras and , consisting of integrable cross-sections with respect to and , respectively. By exploring new relations between the -norms and the norm of the Hilbert -module , we are able to show that the growth of the self-adjoint, compactly supported, continuous cross-sections is polynomial. More precisely, they satisfy for values of n that only depend on d and the weight ν. We use this fact to develop a smooth functional calculus for such elements. We also give some sufficient conditions for these algebras to be symmetric. As consequences, we show that these algebras are locally regular, ⁎-regular and have the Wiener property (when symmetric), among other results. Our results are already new for convolution algebras associated with -dynamical systems.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.