磁作用下纳米包封相变材料在部分多孔圆腔内的双扩散流动与传热

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY
Mohammed Azeez Alomari , Ahmed M. Hassan , Abdellatif M. Sadeq , Faris Alqurashi , Mujtaba A. Flayyih
{"title":"磁作用下纳米包封相变材料在部分多孔圆腔内的双扩散流动与传热","authors":"Mohammed Azeez Alomari ,&nbsp;Ahmed M. Hassan ,&nbsp;Abdellatif M. Sadeq ,&nbsp;Faris Alqurashi ,&nbsp;Mujtaba A. Flayyih","doi":"10.1016/j.rineng.2025.104646","DOIUrl":null,"url":null,"abstract":"<div><div>A numerical investigation of double-diffusive natural convection and magnetohydrodynamics (MHD) in a circular cavity containing nano-encapsulated phase change materials (NEPCM) with a partial porous medium under magnetic field influence has been conducted. The governing equations were discretized using the Galerkin finite element method, and the resulting nonlinear system was solved through the Newton-Raphson iteration technique with PARDISO solver. The study examined the effects of key parameters including Rayleigh (Ra) number (10³-10⁵), Hartmann (Ha) number (0–61), Darcy (Da) number (10⁻⁵-10⁻¹), Lewis (Le) number (0.1–10), buoyancy ratio (2–6), nanoparticle volume fraction (0–0.05), and fusion temperature (0.1–0.9). Results show that increasing nanoparticle concentration from 0 to 0.05 enhances heat transfer (Nusselt number, Nu) by 128 % while reducing mass transfer (Sherwood number, Sh) by 10.3 % at Ra = 10⁵. The magnetic field demonstrates a significant suppressive effect, with Ha increasing from 0 to 61 reducing both Nu and Sh by approximately 55 % and 57 % respectively. An optimal fusion temperature of 0.6 was identified for heat transfer enhancement, while mass transfer showed minimal sensitivity to fusion temperature variations. The study reveals that proper selection of operating parameters, particularly Da and Le numbers, can improve system performance by up to 218 % in mass transfer and 158 % in heat transfer, providing valuable insights for the design of thermal energy storage systems incorporating NEPCM and porous media.</div></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"26 ","pages":"Article 104646"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Double-Diffusive flow and heat transfer of nano-encapsulated phase change materials in a circular cavity with partial porous region under magnetic influence\",\"authors\":\"Mohammed Azeez Alomari ,&nbsp;Ahmed M. Hassan ,&nbsp;Abdellatif M. Sadeq ,&nbsp;Faris Alqurashi ,&nbsp;Mujtaba A. Flayyih\",\"doi\":\"10.1016/j.rineng.2025.104646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A numerical investigation of double-diffusive natural convection and magnetohydrodynamics (MHD) in a circular cavity containing nano-encapsulated phase change materials (NEPCM) with a partial porous medium under magnetic field influence has been conducted. The governing equations were discretized using the Galerkin finite element method, and the resulting nonlinear system was solved through the Newton-Raphson iteration technique with PARDISO solver. The study examined the effects of key parameters including Rayleigh (Ra) number (10³-10⁵), Hartmann (Ha) number (0–61), Darcy (Da) number (10⁻⁵-10⁻¹), Lewis (Le) number (0.1–10), buoyancy ratio (2–6), nanoparticle volume fraction (0–0.05), and fusion temperature (0.1–0.9). Results show that increasing nanoparticle concentration from 0 to 0.05 enhances heat transfer (Nusselt number, Nu) by 128 % while reducing mass transfer (Sherwood number, Sh) by 10.3 % at Ra = 10⁵. The magnetic field demonstrates a significant suppressive effect, with Ha increasing from 0 to 61 reducing both Nu and Sh by approximately 55 % and 57 % respectively. An optimal fusion temperature of 0.6 was identified for heat transfer enhancement, while mass transfer showed minimal sensitivity to fusion temperature variations. The study reveals that proper selection of operating parameters, particularly Da and Le numbers, can improve system performance by up to 218 % in mass transfer and 158 % in heat transfer, providing valuable insights for the design of thermal energy storage systems incorporating NEPCM and porous media.</div></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"26 \",\"pages\":\"Article 104646\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123025007236\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123025007236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对局部多孔介质中含纳米封装相变材料(NEPCM)的圆腔在磁场影响下的双扩散自然对流和磁流体动力学(MHD)进行了数值研究。采用Galerkin有限元法对控制方程进行离散化,利用PARDISO求解器采用Newton-Raphson迭代技术对非线性系统进行求解。该研究考察了关键参数的影响,包括瑞利(Ra)数(10³-10 5)、哈曼(Ha)数(0-61)、达西(Da)数(10⁻-10⁻¹)、刘易斯(Le)数(0.1-10)、浮力比(2-6)、纳米粒子体积分数(0-0.05)和聚变温度(0.1-0.9)。结果表明,当纳米颗粒浓度从0增加到0.05时,在Ra = 10时,传热(努塞尔数,Nu)增加128%,传质(舍伍德数,Sh)减少10.3%。磁场表现出明显的抑制作用,Ha从0增加到61,Nu和Sh分别降低约55%和57%。最佳的熔合温度为0.6可以增强传热,而传质对熔合温度变化的敏感性最小。该研究表明,正确选择运行参数,特别是Da和Le数,可以提高系统性能高达218%的传质和158%的传热,为设计结合NEPCM和多孔介质的储能系统提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Double-Diffusive flow and heat transfer of nano-encapsulated phase change materials in a circular cavity with partial porous region under magnetic influence
A numerical investigation of double-diffusive natural convection and magnetohydrodynamics (MHD) in a circular cavity containing nano-encapsulated phase change materials (NEPCM) with a partial porous medium under magnetic field influence has been conducted. The governing equations were discretized using the Galerkin finite element method, and the resulting nonlinear system was solved through the Newton-Raphson iteration technique with PARDISO solver. The study examined the effects of key parameters including Rayleigh (Ra) number (10³-10⁵), Hartmann (Ha) number (0–61), Darcy (Da) number (10⁻⁵-10⁻¹), Lewis (Le) number (0.1–10), buoyancy ratio (2–6), nanoparticle volume fraction (0–0.05), and fusion temperature (0.1–0.9). Results show that increasing nanoparticle concentration from 0 to 0.05 enhances heat transfer (Nusselt number, Nu) by 128 % while reducing mass transfer (Sherwood number, Sh) by 10.3 % at Ra = 10⁵. The magnetic field demonstrates a significant suppressive effect, with Ha increasing from 0 to 61 reducing both Nu and Sh by approximately 55 % and 57 % respectively. An optimal fusion temperature of 0.6 was identified for heat transfer enhancement, while mass transfer showed minimal sensitivity to fusion temperature variations. The study reveals that proper selection of operating parameters, particularly Da and Le numbers, can improve system performance by up to 218 % in mass transfer and 158 % in heat transfer, providing valuable insights for the design of thermal energy storage systems incorporating NEPCM and porous media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信