具有l样扩散的流行病过程的临界动力学

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
C. Argolo , C. Nauber , A.L. Moura , M.L. Lyra
{"title":"具有l<s:1>样扩散的流行病过程的临界动力学","authors":"C. Argolo ,&nbsp;C. Nauber ,&nbsp;A.L. Moura ,&nbsp;M.L. Lyra","doi":"10.1016/j.physa.2025.130523","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the critical behavior of a stochastic one-dimensional lattice model of a diffusion-limited epidemic process with Lévy flights. Particles <span><math><mi>A</mi></math></span> represent healthy individuals and particles <span><math><mi>B</mi></math></span> are infected. These particles diffuse along the chain with distinct diffusion rates. The hopping distance is assumed to obey a Lévy power-law distribution governed by a characteristic exponent <span><math><mi>α</mi></math></span>. The epidemic process is governed by the reaction processes <span><math><mrow><mi>A</mi><mo>+</mo><mi>B</mi><mo>→</mo><mn>2</mn><mi>B</mi></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>→</mo><mi>A</mi></mrow></math></span> with proper reaction rates. The system presents a non-equilibrium absorbing state phase-transition at a critical total particle density on which the population of <span><math><mi>B</mi></math></span> becomes extinct. Using short-time dynamics Monte Carlo simulations, we determine a set of relevant critical exponents for distinct diffusion regimes going from the non-trivial short-range hopping universality classes holding for large values of <span><math><mi>α</mi></math></span> towards the mean-field exponents as <span><math><mi>α</mi></math></span> approaches unity.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"666 ","pages":"Article 130523"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Critical dynamics of epidemic processes with Lévy-like diffusion\",\"authors\":\"C. Argolo ,&nbsp;C. Nauber ,&nbsp;A.L. Moura ,&nbsp;M.L. Lyra\",\"doi\":\"10.1016/j.physa.2025.130523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the critical behavior of a stochastic one-dimensional lattice model of a diffusion-limited epidemic process with Lévy flights. Particles <span><math><mi>A</mi></math></span> represent healthy individuals and particles <span><math><mi>B</mi></math></span> are infected. These particles diffuse along the chain with distinct diffusion rates. The hopping distance is assumed to obey a Lévy power-law distribution governed by a characteristic exponent <span><math><mi>α</mi></math></span>. The epidemic process is governed by the reaction processes <span><math><mrow><mi>A</mi><mo>+</mo><mi>B</mi><mo>→</mo><mn>2</mn><mi>B</mi></mrow></math></span> and <span><math><mrow><mi>B</mi><mo>→</mo><mi>A</mi></mrow></math></span> with proper reaction rates. The system presents a non-equilibrium absorbing state phase-transition at a critical total particle density on which the population of <span><math><mi>B</mi></math></span> becomes extinct. Using short-time dynamics Monte Carlo simulations, we determine a set of relevant critical exponents for distinct diffusion regimes going from the non-trivial short-range hopping universality classes holding for large values of <span><math><mi>α</mi></math></span> towards the mean-field exponents as <span><math><mi>α</mi></math></span> approaches unity.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"666 \",\"pages\":\"Article 130523\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S037843712500175X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037843712500175X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了一类具有lsamvy飞行的扩散受限流行病过程的一维随机格模型的临界行为。粒子A代表健康个体,粒子B代表被感染个体。这些粒子以不同的扩散速率沿着链条扩散。假设跳跃距离服从由特征指数α控制的lsamvy幂律分布。流行过程受A+B→2B和B→A反应过程控制,反应速率适宜。在临界总粒子密度下,体系呈现非平衡吸收态相变,B族在此状态下消失。利用短时动态蒙特卡罗模拟,我们确定了从具有大α值的非平凡短程跳变普适性类到α趋近于1时的平均场指数的不同扩散机制的一组相关的临界指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical dynamics of epidemic processes with Lévy-like diffusion
We investigate the critical behavior of a stochastic one-dimensional lattice model of a diffusion-limited epidemic process with Lévy flights. Particles A represent healthy individuals and particles B are infected. These particles diffuse along the chain with distinct diffusion rates. The hopping distance is assumed to obey a Lévy power-law distribution governed by a characteristic exponent α. The epidemic process is governed by the reaction processes A+B2B and BA with proper reaction rates. The system presents a non-equilibrium absorbing state phase-transition at a critical total particle density on which the population of B becomes extinct. Using short-time dynamics Monte Carlo simulations, we determine a set of relevant critical exponents for distinct diffusion regimes going from the non-trivial short-range hopping universality classes holding for large values of α towards the mean-field exponents as α approaches unity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信