用局部热非平衡模型计算倾斜多孔层中卡森流体的磁对流:线性和非线性分析

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Bhagya Mathapati, Ravi Ragoju, G. Shiva Kumar Reddy
{"title":"用局部热非平衡模型计算倾斜多孔层中卡森流体的磁对流:线性和非线性分析","authors":"Bhagya Mathapati,&nbsp;Ravi Ragoju,&nbsp;G. Shiva Kumar Reddy","doi":"10.1016/j.cjph.2025.02.042","DOIUrl":null,"url":null,"abstract":"<div><div>The Casson fluids, with their distinct rheological properties, are prevalent in biological, industrial, and material processing systems and the local thermal non-equilibrium (LTNE) model realistically captures heat transfer in porous media by considering separate temperature fields for fluid and solid phases. Incorporating inclination and magnetic effects adds critical complexity and control, making this study essential for optimizing heat and mass transfer in systems. The LTNE model has been used to examine the magneto convection of a Casson fluid in an inclined porous medium under the influence of a magnetic field. Darcy’s law is applied, and we assume the validity of the Oberbeck–Boussinesq approximation. The onset of convection is investigated by two methods: the linear instability analysis and the nonlinear stability analysis. The linear instability analysis is conducted using the normal mode method. The nonlinear stability analysis is studied by utilizing the energy stability method. The resulting eigenvalue problem is solved numerically through the bvp4c routine in MATLAB R2023a. The impact of essential parameters, including the Hartmann number (<span><math><mrow><mi>H</mi><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>), the inter-phase heat transfer parameter (<span><math><mi>H</mi></math></span>), the porosity-modified conductivity ratio (<span><math><mi>τ</mi></math></span>), the Casson fluid parameter (<span><math><mi>β</mi></math></span>), and an inclination angle (<span><math><mi>γ</mi></math></span>), is thoroughly investigated. A comparison of linear instability and nonlinear stability theories reveals a notable difference in the critical Rayleigh numbers (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>), suggesting the potential existence of a subcritical instability region. The major result of the study indicates that an increase in <span><math><mrow><mi>H</mi><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, <span><math><mi>H</mi></math></span>, and <span><math><mi>γ</mi></math></span> leads to significant stabilization of the system, whereas an increase in <span><math><mi>β</mi></math></span> tends to destabilize it. Moreover, the disappearance of transverse rolls is strongly influenced by the parameter <span><math><mi>β</mi></math></span>, making it a critical factor in determining the stability of the system.</div></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"95 ","pages":"Pages 306-319"},"PeriodicalIF":4.6000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Onset of magneto convection of Casson fluid in an inclined porous layer using local thermal non-equilibrium model: A linear and nonlinear analyses\",\"authors\":\"Bhagya Mathapati,&nbsp;Ravi Ragoju,&nbsp;G. Shiva Kumar Reddy\",\"doi\":\"10.1016/j.cjph.2025.02.042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Casson fluids, with their distinct rheological properties, are prevalent in biological, industrial, and material processing systems and the local thermal non-equilibrium (LTNE) model realistically captures heat transfer in porous media by considering separate temperature fields for fluid and solid phases. Incorporating inclination and magnetic effects adds critical complexity and control, making this study essential for optimizing heat and mass transfer in systems. The LTNE model has been used to examine the magneto convection of a Casson fluid in an inclined porous medium under the influence of a magnetic field. Darcy’s law is applied, and we assume the validity of the Oberbeck–Boussinesq approximation. The onset of convection is investigated by two methods: the linear instability analysis and the nonlinear stability analysis. The linear instability analysis is conducted using the normal mode method. The nonlinear stability analysis is studied by utilizing the energy stability method. The resulting eigenvalue problem is solved numerically through the bvp4c routine in MATLAB R2023a. The impact of essential parameters, including the Hartmann number (<span><math><mrow><mi>H</mi><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>), the inter-phase heat transfer parameter (<span><math><mi>H</mi></math></span>), the porosity-modified conductivity ratio (<span><math><mi>τ</mi></math></span>), the Casson fluid parameter (<span><math><mi>β</mi></math></span>), and an inclination angle (<span><math><mi>γ</mi></math></span>), is thoroughly investigated. A comparison of linear instability and nonlinear stability theories reveals a notable difference in the critical Rayleigh numbers (<span><math><mrow><mi>R</mi><msub><mrow><mi>a</mi></mrow><mrow><mi>c</mi></mrow></msub></mrow></math></span>), suggesting the potential existence of a subcritical instability region. The major result of the study indicates that an increase in <span><math><mrow><mi>H</mi><msup><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, <span><math><mi>H</mi></math></span>, and <span><math><mi>γ</mi></math></span> leads to significant stabilization of the system, whereas an increase in <span><math><mi>β</mi></math></span> tends to destabilize it. Moreover, the disappearance of transverse rolls is strongly influenced by the parameter <span><math><mi>β</mi></math></span>, making it a critical factor in determining the stability of the system.</div></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"95 \",\"pages\":\"Pages 306-319\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907325000875\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907325000875","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

Casson流体具有独特的流变特性,在生物、工业和材料加工系统中普遍存在,局部热不平衡(LTNE)模型通过考虑流体和固相的分离温度场,真实地捕捉了多孔介质中的传热。结合倾斜和磁效应增加了临界的复杂性和控制,使得这项研究对于优化系统中的传热和传质至关重要。用LTNE模型研究了卡森流体在倾斜多孔介质中受磁场影响的磁对流问题。采用达西定律,并假定Oberbeck-Boussinesq近似是有效的。采用线性不稳定性分析和非线性稳定性分析两种方法研究了对流的发生。采用正态模态法进行线性失稳分析。利用能量稳定性法对非线性稳定性分析进行了研究。通过MATLAB R2023a中的bvp4c例程对所得到的特征值问题进行了数值求解。研究了哈特曼数(Ha2)、相间传热参数(H)、孔隙率修正电导率比(τ)、卡森流体参数(β)和倾角(γ)等关键参数的影响。将线性不稳定理论与非线性不稳定理论进行比较,发现临界瑞利数(Rac)存在显著差异,表明可能存在亚临界不稳定区域。该研究的主要结果表明,Ha2、H和γ的增加导致系统的显著稳定,而β的增加往往使其不稳定。此外,横辊的消失受参数β的强烈影响,是决定系统稳定性的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Onset of magneto convection of Casson fluid in an inclined porous layer using local thermal non-equilibrium model: A linear and nonlinear analyses

Onset of magneto convection of Casson fluid in an inclined porous layer using local thermal non-equilibrium model: A linear and nonlinear analyses
The Casson fluids, with their distinct rheological properties, are prevalent in biological, industrial, and material processing systems and the local thermal non-equilibrium (LTNE) model realistically captures heat transfer in porous media by considering separate temperature fields for fluid and solid phases. Incorporating inclination and magnetic effects adds critical complexity and control, making this study essential for optimizing heat and mass transfer in systems. The LTNE model has been used to examine the magneto convection of a Casson fluid in an inclined porous medium under the influence of a magnetic field. Darcy’s law is applied, and we assume the validity of the Oberbeck–Boussinesq approximation. The onset of convection is investigated by two methods: the linear instability analysis and the nonlinear stability analysis. The linear instability analysis is conducted using the normal mode method. The nonlinear stability analysis is studied by utilizing the energy stability method. The resulting eigenvalue problem is solved numerically through the bvp4c routine in MATLAB R2023a. The impact of essential parameters, including the Hartmann number (Ha2), the inter-phase heat transfer parameter (H), the porosity-modified conductivity ratio (τ), the Casson fluid parameter (β), and an inclination angle (γ), is thoroughly investigated. A comparison of linear instability and nonlinear stability theories reveals a notable difference in the critical Rayleigh numbers (Rac), suggesting the potential existence of a subcritical instability region. The major result of the study indicates that an increase in Ha2, H, and γ leads to significant stabilization of the system, whereas an increase in β tends to destabilize it. Moreover, the disappearance of transverse rolls is strongly influenced by the parameter β, making it a critical factor in determining the stability of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信